B.1.4 Operational Works Drawings (Bulk Earthworks)

Stantec (AUS) Pty Ltd | ABN 17 007 820 322 Level 6, Springfield Tower, 145 Sinnathamby Boulevard Springfield Central QLD 4300 Tel: 07 3381 0111 Fax: 07 3470 1241 Web: www.stantec.com/au

© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

KALFRESH PTY LTD SCENIC RIM AGRICULTURAL INDUSTRIAL PRECINCT

SCHEDULE OF DRAWINGS

DRAWING No.	DESCRIPTION
GENERAL	•
510357-008-CI-1000	COVER SHEET
510357-008-CI-1001	DRAWING SCHEDULE AND LOCALITY PLAN
510357-008-CI-1002	GENERAL NOTES AND TYPICAL SECTIONS
510357-008-CI-1003	EXISTING FEATURES PLAN
EROSION AND SEDIM	IENT CONTROL
510357-008-CI-1020	EROSION AND SEDIMENT CONTROL LEGEND AND NOTES
510357-008-CI-1021	EROSION AND SEDIMENT CONTROL CONSTRUCTION SEQUENCE
510357-008-CI-1022	EROSION AND SEDIMENT CONTROL CONCEPT DEVICE DETAILS
510357-008-CI-1023	EROSION AND SEDIMENT CONTROL CONCEPT LAYOUT PLAN
EARTHWORKS	
510357-008-CI-1030	BULK EARTHWORKS OVERALL LAYOUT PLAN
510357-008-CI-1031	CUT AND FILL PLAN SHEET 1
510357-008-CI-1032	CUT AND FILL PLAN SHEET 2
510357-008-CI-1033	CUT AND FILL PLAN SHEET 3
510357-008-CI-1034	CUT AND FILL PLAN SHEET 4
510357-008-CI-1035	BULK EARTHWORKS SETOUT TABLES
510357-008-CI-1036	BULK EARTHWORKS SITE SECTIONS SHEET 1
510357-008-CI-1037	BULK EARTHWORKS SITE SECTIONS SHEET 2
SITEWORKS	
510357-008-CI-1110	CONTROL LINE SETOUT PLAN
510357-008-CI-1130	MC01 LONGITUDINAL SECTION
510357-008-CI-1131	MC02 LONGITUDINAL SECTION SHEET 1
510357-008-CI-1132	MC02 LONGITUDINAL SECTION SHEET 2
510357-008-CI-1133	TD01 LONGITUDINAL SECTION SHEET 1
510357-008-CI-1134	TD01 LONGITUDINAL SECTION SHEET 2
510357-008-CI-1135	TD01 LONGITUDINAL SECTION SHEET 3
STORMWATER DRAIN	NAGE
510357-008-CI-1301	WEIR CULVERT PLAN AND DETAILS
510357-008-CI-1302	BUND CULVERT PLAN AND DETAILS

С	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.
В	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.
Α	20/02/2020	ISSUE FOR APPROVAL	M.D.	B.W.	J.O.S.
Rev.	Date	Description	Des.	Verif.	Appd.

PTY LTD					
INDUSTRIAL PRECINCT	Status NOT TO BE U	FOR AP	PROVAL	N PU	RPOSES
	DATUM AHD	GRID	Scale AS SHOWN	Size	A1
	Drawing Number				
	510	357-008-0	CI-1001		С

PIYLID					
INDUSTRIAL PRECINCT	Status NOT TO BE U	FOR AP	PROVAL	N PU	RPOSES
	DATUM AHD	GRID	Scale AS SHOWN	Size	A1
	Drawing Number				
NS	510	357-008-0	CI-1002		D

 Image: Marking Series (Marking Series (

0	50	100	150	200r
SCALE 1:	2000			@A1

EXISTING FEATURES SCALE 1:2000

© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

Drawn C.V	Date 21/01/2020	Client KALFRESH
Checked B.W.	Date 20/02/2020	Project SCENIC RIM
Designed M.D.	Date 20/01/2020	AGRICULTURAL
/erified	Date	
J.O.S.	20/02/2020	Title
Approved	RPEQ. 19706	
Digitally, signed by JOHN O'SULLIVAN for STA	22/02/2023 NTEC AUSTRALIA PY LM Date 22/02/2023	EXISTING FEATU

	MORTH				
1020 10201 10200 10200 1000000					
89.0					
81.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83					
81.0	Ĺ	EGEND	PROP	FRTY BOUNDAR	ΥY
	-	82.0	EXIST	ING CONTOURS	(1m)
	THE BE INF NO OF	BEWARE C E LOCATION C EN INTERPOL POSITIONS C ORMATION S RESPONSIBII THE INTERP ENSURE ALI OCATED PRIC	WARNING OF UNDERGROU OF UNDERGROU ATED FROM G OF VALVES, MAI UPPLIED BY SE LITY IS TAKEN I OLATED INFOF L SERVICES AR OR TO COMMEN	JND SERVICES JND SERVICES H IS DATA OR KNC NHOLES ETC. OF RVICE AUTHORI FOR THE ACCUR MATION SUPPLI E ACCURATELY ICEMENT OF WC	HAVE DWN R TIES. ACY ED. DRK
FASTING				SCRIPTION	
458463.147	6907403.028	86.999	SOUTH-WE	ST OF SITE ALO	NG
458121.215	6907500.599	84.958	PSM - S	SOUTH OF SITE	
TY LTD		Status			

NDUSTRIAL PRECINT	NOT TO BE U	FOR AP	PROVAL	N PUI	RPOSES	
	DATUM	GRID	Scale	Size		
	AHD		AS SHOWN		A1	
	Drawing Number					
RES PLAN	510	357-008-0	CI-1003		С	

EROSION, SEDIMENT AND DRAINAGE CONTROL GENERAL NOTES

- THE EROSION AND SEDIMENT CONTROL MEASURES IMPLEMENTED ON SITE SHOULD BE INSTALLED AND UTILISED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION (IECA) AUSTRALASIA 'BEST PRACTICE EROSION AND SEDIMENT CONTROL (NOVEMBER 2008)' GUIDELINES, WITH DETAILS SHOWN ON THE STANDARD DRAWINGS NOTED, AND AS REQUIRED FOR COMPLIANCE WITH THE REQUIREMENTS OF THE CONSTRUCTION ENVIRONMENTAL MANAGEMENT PLAN.
- THE EROSION AND SEDIMENT CONTROL MEASURES SHOWN ON THESE PLANS HAVE BEEN BASED ON A CONSTRUCTION PERIOD OF UP TO 12 MONTHS. SHOULD THE CONSTRUCTION PERIOD EXTEND BEYOND 12 MONTHS THEN THE CONTROL MEASURES PROVIDED SHOULD BE REVIEWED TO CONFIRM IF THE DEVICES REMAIN ADEQUATE.
- 3. THE CONTROL MEASURES NOTED IN THIS PLAN REPRESENT THE MINIMUM ANTICIPATED STANDARDS OF EROSION AND SEDIMENT CONTROL FOR THE CONSTRUCTION PHASE. ALL MEASURES ARE TO BE SUPPLEMENTED WITH MONITORING AND MAINTENANCE ON SITE. ADDITIONAL CONTROLS OR MODIFICATIONS TO WORK PRACTICES MAY BE REQUIRED TO SUIT THE SITE CONDITIONS OR CONSTRUCTION SEQUENCING AS IDENTIFIED THROUGH ON-SITE MONITORING.
- 4. SHOULD IT BE DEEMED NECESSARY FROM MONITORING OR WHERE DIRECTED BY THE SUPERINTENDENT, THE CONTRACTOR SHALL INSTALL ADDITIONAL MEASURES TO MINIMISE THE IMPACT OF CONSTRUCTION ACTIVITIES ON THE SURROUNDING ENVIRONMENT.
- 5. PUBLIC AND WORKPLACE SAFETY ISSUES MUST BE CONSIDERED AND MONITORED FOR EACH DEVICE TO THE SATISFACTION OF LOCAL AUTHORITIES AND INDUSTRY STANDARDS.
- THE CONTRACTOR IS RESPONSIBLE FOR LOCATING EROSION AND SEDIMENT CONTROL DEVICES TO ACCOMMODATE EARTHWORKS AS REQUIRED. THE LOCATION OF THE EROSION AND SEDIMENT CONTROL DEVICES SHOWN ARE INDICATIVE ONLY. IT IS THE CONTRACTOR'S RESPONSIBILITY TO SPECIFICALLY LOCATE THE CONTROL DEVICES, AND MINIMISE SEDIMENT TRANSPORT DOWNSTREAM DURING ALL STAGES OF CONSTRUCTION, INCLUDING THE MAINTENANCE PERIOD. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO ENSURE THAT THE INTENTS OF THESE PLANS AND ANY CONSENT AUTHORITY COMPLIANCE RECOMMENDATIONS ARE COMPLIED WITH.
- 7. WHERE PRACTICAL ALL AREAS OF THE SITE NOT SUBJECT TO EROSION, CONTAMINATION OR DISTURBANCE MUST HAVE PROVISION FOR ALL RUN-OFF TO BE DIVERTED AWAY FROM THE NOMINATED EROSION AND SEDIMENT CONTROL MEASURES AND FACILITIES. IN A MANNER, WHICH DOES NOT CAUSE SCOURING, OR EROSION.
- 8. WHERE INDICATED CONTAMINATED RUN-OFF MUST BE DIRECTED TOWARDS A TEMPORARY SEDIMENT CONTROL DEVICE DURING BOTH THE BULK EARTHWORKS PHASE AND CIVIL WORKS PHASE UNTIL 80% OF THE CONTRIBUTING SITE IS ADEQUATELY STABILISED.
- 9. ALL EROSION AND SEDIMENT CONTROL MEASURES INSTALLED DURING BULK EARTHWORKS ARE TO BE MAINTAINED IN EFFECTIVE OPERATIONAL CONDITION UNTIL THE SITE IS ADEQUATELY STABILISED. THIS INCLUDES MONITORING, REPAIRS AND CLEANING OUT AT REGULAR INTERVALS, AFTER STORM EVENTS, DISTURBANCE BY CONSTRUCTION AND AS DIRECTED BY SUPERINTENDENT ON SITE. THESE STRUCTURES MUST NOT BE ALLOWED TO ACCUMULATE SEDIMENT VOLUMES IN EXCESS OF FORTY PER CENT (40%) SEDIMENT STORAGE DESIGN CAPACITY. WHERE SEDIMENT BASINS ARE USED A MARKER SHALL BE PLACED WITHIN THE BASIN TO SHOW THE LEVEL ABOVE WHICH THE SEDIMENT STORAGE DESIGN CAPACITY OCCURS. MATERIALS REMOVED FROM SEDIMENT RETENTION DEVICES MUST BE DISPOSED OF IN A MANNER APPROVED BY THE CONSENT AUTHORITY THAT DOES NOT CAUSE POLLUTION.
- 10. WHERE WATER STORAGE IS PROPOSED FOR CONSTRUCTION PURPOSES, IT SHOULD BE PROVIDED OVER AND ABOVE THE MINIMUM NOTED SEDIMENT BASIN SETTLING ZONE AND STORAGE ZONE VOLUMES. WATER LEVELS SHOULD NOT EXTEND INTO THE SETTLING ZONE VOLUME TO ALLOW FOR THIS VOLUME TO BE AVAILABLE FOR THE NEXT RAINFALL EVENT.
- 11. ACCESS TO THE SITE MUST BE RESTRICTED TO THE NOMINATED STABILISED CONSTRUCTION ENTRANCE / EXITS. ROCK PAD ACCESS POINTS SHALL BE PROVIDED TO HELP SHAKE MUD FROM VEHICLE TYRES. THE NUMBER OF CONSTRUCTION ACCESS POINTS TO BE LIMITED. ADDITIONAL MEASURES TO BE PROVIDED IF EVIDENCE OF SEDIMENT BEING TRANSPORTED ONTO ROADWAYS.
- 12. ANY DIRT / MATERIALS SPILT OR TRACKED ONTO TMR, COUNCIL OR OTHER EXTERNAL ROADS IS TO BE BROOMED UP AND COLLECTED - NOT WASHED INTO STORMWATER DRAINS OR WATERWAYS.
- 13. THE CONTRACTOR SHALL ENSURE THE STABILISED SITE ACCESS IS MAINTAINED AND CLEANED OUT REGULARLY AND AS DIRECTED BY THE SUPERINTENDENT ON SITE.
- 14. RUNOFF RETAINED WITHIN THE SEDIMENT BASINS IS NOT TO BE RELEASED TO THE RECEIVING ENVIRONMENT UNTIL THE SUSPENDED SOLIDS CONCENTRATIONS ARE LESS THAN 50 MILLIGRAMS PER LITRE, AND THE pH OF THE WATER WITHIN THE BASIN IS WITHIN THE 6.5-8.5 RANGE. TESTING OF SUSPENDED SOLIDS AND pH WITHIN ANY TEMPORARY SEDIMENT BASIN IS TO

;	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.
}	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.
1	20/02/2020	ISSUE FOR APPROVAL	M.D.	C.D.B.	C.D.B.
٧.	Date	Description	Des.	Verif.	Appd.

OCCUR PRIOR TO ANY CONTROLLED DISCHARGES. DOSING WITH A COAGULANT AND/OR FLOCCULANT IS ANTICIPATED TO BE REQUIRED TO REACH ACCEPTABLE LEVELS OF pH AND SUSPENDED SOLIDS. CONTRACTOR TO CONFIRM THE DETAILED METHODS FOR FLOCCULATION, AND THE TYPES AND DOSES OF COAGULANTS AND / OR FLOCCULANTS TO BE UTILISED ON SITE.

- 15. DURING CONSTRUCTION, STOCKPILES AND AREAS OF BARE SOIL OR EARTH THAT ARE LIKELY TO BECOME ERODED MUST BE ADEQUATELY PROTECTED – BY UPSLOPE SURFACE WATER DIVERSION, DOWNSLOPE SEDIMENT CONTROLS AND TEMPORARY SURFACE COVERINGS.
- 16. TOPSOIL STOCKPILES ARE TO BE MULCHED OR TEMPORARILY VEGETATED IF THEY ARE TO REMAIN FOR MORE THAN 10 DAYS.
- 17. MAXIMUM LENGTH OF EXPOSED SLOPE TO BE LIMITED TO 80m BY THE USE OF THE EROSION AND SEDIMENT DEVICES SHOWN.
- 18. CLEAN WATER DIVERSION DRAINS TO BE TURFED IF LONGITUDINAL GRADE <10% AND 2 YR ARI VELOCITY IS LESS THAN 1.5m/s. OTHERWISE THEY ARE TO BE ROCK LINED.
- 19. THE OUTLETS OF ALL DIVERSION DRAINS TO HAVE ROCK SCOUR PROTECTION INSTALLED TO ACT AS AN OUTLET DISCHARGE ENERGY DISSIPATER.
- 20. VELOCITY CONTROLS AND / OR CHANNEL LININGS TO BE UTILISED WITHIN EARTH LINED CATCH DRAINS WITH FLOW VELOCITIES >0.6m/s.
- 21. FOR MANAGEMENT OF DISPERSIVE SOILS REFER TO IECA 'BEST PRACTICE EROSION AND SEDIMENT CONTROL (NOVEMBER, 2008)' GUIDELINES AND **IPSWICH CITY COUNCILS 'IMPLEMENTATION GUIDELINE No. 28 - DISPERSIVE SOIL** MANAGEMENT' FOR FURTHER GUIDANCE
- 22. FOR IDENTIFIED DISPERSIVE SOILS AREAS, FLOW DIVERSION BUNDS/BANKS SHOULD BE ADOPTED OVER CUT IN CATCH DRAINS. WHERE CUT IN DRAINS ARE NECESSARY WITHIN DISPERSIVE SOIL AREAS, THESE CATCH DRAINS SHOULD BE ADEQUATELY LINED WITH A MINIMUM OF 150mm OF NON-DISPERSIVE MATERIAL PRIOR TO THE INSTALLATION OF OTHER TEMPORARY CHANNEL LININGS OR CHECK DAMS.
- 23. ALL DISTURBED SURFACES OTHER THAN CHANNEL WORKS AREAS TO BE EITHER ADEQUATELY SEALED, STABILISED OR VEGETATED TO THE DESIGN REQUIREMENTS WITHIN 20 DAYS OF COMPLETION OF SITE WORKS FOR MODERATE EROSION RISK AREAS, AND WITHIN 10 DAYS FOR HIGH EROSION RISK AREAS.
- 24. CHANNEL WORKS AREAS TO BE ADEQUATELY STABILISED OR VEGETATED TO THE DESIGN REQUIREMENTS WITHIN 10 DAYS OF COMPLETION OF WORKS FOR MODERATE EROSION RISK AREAS, AND WITHIN 5 DAYS FOR HIGH EROSION RISK AREAS.

EROSION RISK

FROM TABLE 4.4.5 - EROSION RISK RATING BASED ON AVERAGE MONTHLY RAINFALL DEPTH OF THE IECA GUIDELINES, THE SUBJECT SITE IS ESTIMATED TO HAVE AN EROSION RISK RATING RANGING BETWEEN 'HIGH' FOR THE MONTHS OF DECEMBER THROUGH TO FEBRUARY, TO 'LOW' FOR JULY THROUGH TO SEPTEMBER. REFER TO TABLE BELOW FOR THE MONTHLY EROSION RISK RATINGS FOR NEARBY LOCATIONS OF IPSWICH AND TOOWOOMBA.

EROSION R	ISK F	RATIN	G BA	SED () AN	/ERA	GE M	ONTH	ILY R	AINF	ALL	
DEPTH TABLE												

LOCATION	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
IPSWICH	Н	Н	М	М	М	М	L	L	L	М	М	Н
TOOWOOMBA	Н	Н	М	М	М	М	М	L	М	М	М	Н

2 FROM TABLE 4.4.7 OF THE IECA GUIDELINES, THE FOLLOWING BEST PRACTICE LAND CLEARING AND REHABILITATION REQUIREMENTS HAVE BEEN RECOMMENDED FOR 'LOW'. 'MODERATE' AND 'HIGH' EROSION RISK RATINGS:

FOR A 'LOW' EROSION RISK RATING: LAND CLEARING LIMITED TO MAXIMUM OF EIGHT WEEKS OF WORK.

- DISTURBED SOIL SURFACES STABILISED WITH A MINIMUM 70% COVER WITHIN 30 DAYS OF COMPLETION OF WORKS WITHIN ANY AREA OF A WORK SITE.
- UNFINISHED EARTHWORKS ARE SUITABLY STABILISED IF RAINFALL IS REASONABLY POSSIBLE, AND DISTURBANCE IS EXPECTED TO BE SUSPENDED FOR A PERIOD EXCEEDING 30 DAYS.

FOR A 'MODERATE' EROSION RISK RATING:

- I AND CLEARING LIMITED TO MAXIMUM OF SIX WEEKS OF WORK.
- DISTURBED SOIL SURFACES STABILISED WITH A MINIMUM 70% COVER WITHIN 20 DAYS OF COMPLETION OF WORKS WITHIN ANY AREA OF A WORK SITE.
- STAGE CONSTRUCTION AND STABILISATION OF EARTH BATTERS (STEEPER THAN 6H:1V) IN MAXIMUM 3m VERTICAL INCREMENTS WHEREVER REASONABLE AND PRACTICABLE.
- UNFINISHED EARTHWORKS ARE SUITABLY STABILISED IF RAINFALL IS REASONABLY POSSIBLE, AND DISTURBANCE IS EXPECTED TO BE SUSPENDED FOR A PERIOD EXCEEDING 20 DAYS.
- FOR A 'HIGH' EROSION RISK RATING:
- LAND CLEARING LIMITED TO MAXIMUM OF FOUR WEEKS OF WORK.
- DISTURBED SOIL SURFACES STABILISED WITH A MINIMUM 75% COVER WITHIN 10 DAYS OF COMPLETION OF WORKS WITHIN ANY AREA OF A WORK SITE.
- STAGE CONSTRUCTION AND STABILISATION OF EARTH BATTERS (STEEPER THAN 6H:1V) IN MAXIMUM 3m VERTICAL INCREMENTS WHEREVER REASONABLE AND PRACTICABLE.
- THE USE OF TURF TO FORM GRASSED SURFACES GIVEN APPROPRIATE CONSIDERATION. SOIL STOCKPILES AND UNFINISHED EARTHWORKS ARE SUITABLY STABILISED IF DISTURBANCE IS EXPECTED TO BE SUSPENDED FOR A PERIOD EXCEEDING 10 DAYS.

APPLICATION OF EROSION CONTROL MEASURES TO SOIL SLOPES $(T \Delta B | E 4 4 13 \cap E | E \cap \Delta 2008)$

)
FLAT LAND	MILD SLOPE	STEEP SLOPE
(FLATTER THAN 1 in 10)	(1 in 10 - 1 in 4)	(STEEPER THAN 1 in 4)
EROSION CONTROL BLANKETS	BONDED FIBRE MATRIX	BONDED FIBRE MATRIX
GRAVELLING	COMPOST BLANKETS	CELLULAR CONFINEMENT SYSTEMS
MULCHING	EROSION CONTROL BLANKETS, MATS AND MESH	COMPOST BLANKETS
REVEGETATION	MULCHING WELL ANCHORED	EROSION CONTROL BLANKETS, MATS AND MESH
ROCK MULCHING	REVEGETATION	REVEGETATION
SOIL BINDER	ROCK MULCHING	ROCK ARMOURING
TURFING	TURFING	TURFING

— — — 36[°] —

LEGEND

© Stantec Limited All Rights Reserved. his document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the erms of the retainer. Stantec Limited does not and shall no assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

Drawn C.V		Date 21/01/2020	Client KALFRESH PTY LTD
Checked C.D.B.		Date 20/02/2020	Project SCENIC RIM
Designed M.D.		Date 20/01/2020	AGRICULTURAL INDUSTRIAL
Verified		Date	
C.D.B.		20/02/2020	Title
Approved	CD CPESC 7619	Date 20/02/2020	EROSION AND SEDIMENT CO LEGEND AND NOTES

EGEND	
	WORKS BOUNDARY
	CLEARING LIMITS
	CATCHMENT BOUNDARY
CATCHMENT 1B 0.640ha	CATCHMENT ID AND AREA
SF	SEDIMENT FENCE (REFER IECA STD DWG SD-SF-01 AND SD-SF-02). SEDIMENT FENCE INSTALLED DOWN THE SLOPE TO HAVE RETURNS, WITH SPILL THROUGH WEIRS, PLACED AT REGULAR INTERVALS. ENDS OF SEDIMENT FENCE TO BE EXTENDED UPSLOPE AT LEAST 1.0m.
SF	SEDIMENT FENCE SPILL THROUGH WEIR. PROVIDE BATTER CHUTE TO ADJACENT CATCH DRAIN WHERE OUTLET GRADE EXCEEDS 1 IN 20 (5%)
	FLOW CONTROL BERM/BUND (REFER IECA STD DWG SD-CB-01 AND SD-MB-01 FOR TYPICAL DETAILS)
→ DD	CLEAN WATER DIVERSION DRAIN, REFER NOTES 18 & 19 (REFER IECA STD DWG No. SD-DC-01)
→ CD	DIRTY WATER CATCH DRAIN, REFER NOTES 19 & 20 (REFER IECA STD DWG No. SD-CD-01, SD-CD-02, SD-CD-04 & SD-CD-05)
	EXISTING CONTOUR (1.0m INTERVAL)
- — — 36 — — — —	FINISHED CONTOUR (0.25m INTERVAL)
	TEMPORARY LINED BATTER CHUTE (REFER IECA STD DWG SD-CH-01, SD-CH-02, SD-CH-03 AND SD-CH-06)
	SITE COMPOUND (INDICATIVE ONLY)
	SEDIMENT BASIN (REFER TO TABLE 1 AND 2 FOR DETAILS, INDICATIVE LOCATION ONLY, REFER IECA STD DWG SD-SB-05 AND SD-SB-06)
	CHECK DAM (INDICATIVE ONLY, REFER IECA STD DWG SD-RCD-01)(SAND BAGS TO BI USED WHERE CHANNELS ARE <0.5m DEPTH, ROCK TO BE USED WHERE CHANNELS ARE >0.5m DEPTH)
	ON GRADE OR SAG PIT FILTER SOCK INLET PROTECTION (REFER IECA STD DWG SD-FS-01 AND SD-SA-01)
20	SEDIMENT BASIN EMERGENCY SPILLWAY LOCATION (INDICATIVE ONLY, TO BE CONFIRMED ON-SITE)
	DESIGNATED STOCKPILE LOCATION (INDICATIVE ONLY, IF REQUIRED)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AREA TO BE TOPSOILED AND SEEDED OR STABILISED TO DESIGN REQUIREMENTS. BATTERS TO BE LANDSCAPED, TURFED OR HYDROMULCHED ETC IN ACCORDANCE WITH APPROVED CIVIL DRAWINGS.
	TURF FULL VERGE AREA FROM BACK OF KERB TO LOT BOUNDARY. TURF LINE INTER-ALLOTMENT DRAINAGE CHANNELS (REFER IECA STD DWG SD-GFS-01 AND SD-GFS-02)
	FABRIC DROP INLET PROTECTION AROUND FIELD INLET (REFER IECA STD DWG SD-FD-01 AND SD-FD-02)
	CONSTRUCTION ENTRY / EXIT ROCK PAD (INDICATIVE ONLY, REFER IECA STD DWG SD-EXIT-01 AND SD-EXIT-02)
	SEDIMENT TRENCH AND WEIR (REFER IECA STD DWG SD-SS-01, SD-SS-02, SD-SW-07 AND SD-SW-02) (INDICATIVE LOCATION ONLY, FINAL POSITION TO BE CONFIRMED ON SITE)
	ROCK FILTER DAM (REFER TO IECA STD DWG SD-RFD-01 AND SD-RFD-02) (INDICATIV LOCATION ONLY, FINAL POSITION TO BE CONFIRMED ON-SITE)
⊕ ^{SP1}	WATER QUALITY SAMPLING LOCATION (INDICATIVE ONLY, CONTRACTOR TO CONFIR ON SITE)
	BONDED FIBRE MATRIX OR APPROVED EQUIVALENT HYDRAULICALLY APPLIED STABILISER TO BE APPLIED TO ALL BATTERS TO SUPERINTENDENTS INSTRUCTIONS (REFER IECA STD DWG SD-BFM-01). ANY TABLE DRAINS TO BE STABILISED USING EROSION CONTROL METHODS SUITABLE FOR CONCENTRATED FLOW AREAS.
LS	LEVEL SPREADER FLOW DISSIPATER (INDICATIVE ONLY, REFER IECA STD DWG SD-LS-01)
$\checkmark \lor \lor$	FLOW DIRECTION

INDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PUR							
	DATUM	GRID	Scale	Size				
	AHD		AS SHOWN		A1			
	Drawing Number	Revision						
)TES	510	С						

EROSION AND SEDIMENT CONTROL CONSTRUCTION SEQENCE

PHASE 1 - PRIOR TO EARTHWORKS:

- 1. INSTALL CONSTRUCTION ENTRY/EXIT AND SITE FENCING. IF REQUIRED SECURITY GATES TO BE INSTALLED.
- INSTALL 'NO GO' FENCING TO RESTRICT ACCESS TO PROTECTED AREAS.
- INSTALL SEDIMENT FENCING ALONG DOWNSLOPE EXTENT OF WORK AREAS. WHERE PRACTICAL INSTALL CLEAN WATER DIVERSION DRAINS/BUNDS AROUND CONSTRUCTION AREAS AND APPROPRIATELY STABILISE. OUTLET OF DIVERSION DRAINS TO HAVE APPROPRIATE
- SCOUR PROTECTION INSTALLED. TEMPORARY STOCKPILE AREAS TO BE MARKED OUT. TOPSOIL TO BE TRANSPORTED IN A DAMP
- CONDITION TO RETAIN SOIL STRUCTURE. TOPSOIL STOCKPILES TO BE LOW FLAT LONG MOUNDS. STRIP AND STOCKPILE TOPSOIL FROM SEDIMENT BASIN AREAS.
- CONSTRUCT SEDIMENT BASINS AND OTHER NOMINATED SEDIMENT CONTROL DEVICES AS 7 NOTED. PROVIDE APPROPRIATE SAFETY FENCING IF BATTERS STEEPER THAN 1 IN 4 ARE USED.
- CONSTRUCT PERIMETER BUNDS/CATCH DRAINS ALONG DOWNSLOPE EXTENT OF WORK AREAS TO DIRECT DIRTY WATER RUNOFF TOWARDS NOMINATED SEDIMENT CONTROL DEVICES. AS NOTED OR WHERE IDENTIFIED THROUGH MONITORING CHECK DAMS OR CHANNEL LININGS MAY BE NECESSARY TO ASSIST WITH THE MANAGEMENT OF FLOW VELOCITIES.
- FINAL LOCATION OF EROSION, SEDIMENT AND DRAINAGE CONTROL DEVICES TO BE CONFIRMED ON SITE WITH CONTRACTOR'S ENVIRONMENTAL MANAGER AND THE SUPERINTENDENT.

PHASE 2 - DURING EARTHWORKS:

- ENSURE THAT NOMINATED CONTROL MEASURES FROM PHASE 1. WHICH ARE TO REMAIN IN PLACE. ARE MAINTAINED AND FUNCTIONAL.
- STRIP AND STOCKPILE TOPSOIL FROM EARTHWORKS AREAS. 2.
- EARTHWORKS TO BE CARRIED OUT PROGRESSIVELY AND COMPACTED IN STAGES TO PREVENT 3 LARGE AREAS OF UNCONSOLIDATED MATERIALS BEING PRESENT ON SITE.
- 4. DIVERT ALL DIRTY WATER RUNOFF TOWARDS NOMINATED SEDIMENT CONTROL DEVICES. AS EARTHWORKS PROGRESSES REVIEW AND ADD/AMEND DIRTY WATER DRAINAGE CONTROL DEVICES AS REQUIRED. VELOCITY CONTROLS TO BE IMPLEMENTED AS REQUIRED
- REVIEW LOCATION AND MINIMUM SIZING OF SEDIMENT CONTROL DEVICES AS EARTHWORKS PROGRESSES, AND AMENDED AS NECESSARY.
- SEDIMENT FENCING / DIVERSION BUNDS TO BE INSTALLED ALONG THE TOP OF BATTERS TO MANAGE UNCONTROLLED FLOWS DOWN THE EXPOSED STEEP AREAS. TEMPORARY BATTER CHUTES TO BE UTILISED TO CONTROL FLOWS DOWN BATTER SLOPES WHERE REQUIRED.
- PROGRESSIVELY RESPREAD TOPSOIL FOLLOWING COMPLETION OF EARTHWORKS STAGES, 7. LEAVING IN A ROUGHENED STATE. TOPSOIL TO BE TRANSPORTED IN A DAMP CONDITION TO RETAIN SOIL STRUCTURE. SEED/MULCH/HYDROMULCH/TURF AREAS IMMEDIATELY UPON COMPLETION. IRRIGATE AREAS AS REQUIRED.
- AS ROADS ARE FORMED, SANDBAG CHECK DAMS TO BE PLACED TO ASSIST WITH MANAGING RUNOFF VELOCITIES.
- FINAL LOCATION OF EROSION, SEDIMENT AND DRAINAGE CONTROL DEVICES TO BE CONFIRMED ON SITE WITH CONTRACTOR'S ENVIRONMENTAL MANAGER AND THE SUPERINTENDENT.
- 10. REGULARLY MONITOR AND MAINTAIN EROSION, SEDIMENT AND DRAINAGE CONTROLS TO ENSURE MEASURES REMAIN FUNCTIONAL. DAMAGED AND/OR INEFFECTIVE CONTROLS AND MATERIALS ARE TO BE REPAIRED, REFURBISHED OR REPLACED.
- 11. INSPECT ALL CONTROL DEVICES AND MEASURES PRIOR TO AND FOLLOWING RAINFALL EVENTS, AND REPAIR/REPLACE AS REQUIRED.

PHASE 3 - SITE STABILISATION:

- 1. ENSURE THAT NOMINATED CONTROL MEASURES FROM PHASES 1 AND 2, WHICH ARE TO REMAIN IN PLACE, ARE MAINTAINED AND FUNCTIONAL.
- 2. UNCOMPLETED EARTHWORKS AREAS TO BE TEMPORARILY STABILISED WITH APPROPRIATE SOIL BINDER/MULCH/HYDROMULCH OR EQUIVALENT WHERE WORKS HAVE CEASED FOR AN EXTENDED PERIOD OF TIME (SUBJECT TO EROSION RISKS).
- MONITOR AND MAINTAIN ALL TEMPORARY CONTROL DEVICES AND PERMANENT STABILISATION MEASURES. DAMAGED AND/OR INEFFECTIVE CONTROLS AND MATERIALS ARE TO BE REPAIRED. REFURBISHED OR REPLACED.
- 4. INSPECT ALL CONTROL DEVICES AND MEASURES PRIOR TO AND FOLLOWING RAINFALL EVENTS, AND REPAIR/REPLACE AS REQUIRED
- RESEED AND IRRIGATE ANY DISTURBED AREAS.
- SEDIMENT BASINS AND OTHER SEDIMENT CONTROL DEVICES TO BE DECOMMISSIONED FOLLOWING ADEQUATE STABILISATION OF THE UPSLOPE CONTRIBUTING CATCHMENT AREAS.
- 7. WHERE SEDIMENT BASIN AREA DOES NOT FORM PART OF PERMANENT STORMWATER MANAGEMENT STRATEGY, AREA TO BE APPROPRIATELY STABILISED, DOWNSLOPE SEDIMENT FENCING TO REMAIN IN PLACE UNTIL ADEQUATE STABILISATION OF DISTURBED AREA.
- 8. TEMPORARY STOCKPILE AREAS AND SITE COMPOUND/OFFICE TO BE DECOMMISSIONED AND AREAS APPROPRIATELY STABILISED.
- 9. DOWNSLOPE EXTENT OF WORK AREA SEDIMENT FENCING TO REMAIN IN PLACE UNTIL ADEQUATE STABILISATION OF CONTRIBUTING UPSLOPE CATCHMENT AREA.
- 10. PLANTING, TURFING, MULCHING ETC. TO NOMINATED APPROVED LANDSCAPE PLANS.

С	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.
В	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.
А	20/02/2020	ISSUE FOR APPROVAL	M.D.	C.D.B.	C.D.B.
Rev.	Date	Description	Des.	Verif.	Appd.
A Rev.	20/02/2020 Date	ISSUE FOR APPROVAL Description	M.D. Des.	C.D.B. Verif.	C.D.B. Appd.

1. THE CONTRACTOR IS RESPONSIBLE FOR THE CONTROL OF ALL DUST EMISSIONS DURING ALL EARTHWORKS OPERATIONS.

- ALL PERMANENT BUNDS AND RESHAPED AREAS WILL BE RE-VEGETATED AS QUICKLY AS POSSIBLE.
- STOCKPILING ON-SITE WILL BE MINIMISED WHERE POSSIBLE. CONSIDER THE ORIENTATION OF TEMPORARY STOCKPILES TO MINIMISE THE EFFECT OF PREVAILING WINDS.
- PROVISION OF BARRIER FENCE WIND BREAKS.
- PARTICULARLY AROUND STOCKPILE AREAS.
- MAINTENANCE OF VEGETATED BUFFERS AND/OR THE IMPLEMENTATION OF BARRIERS
- USE OF SHAKEDOWN AREAS FOR HAUL TRUCKS LEAVING THE SITE. MINIMISATION OF VEHICULAR MOVEMENT EXCEPT FOR DESIGNATED TRAFFIC ROUTES.

- IMPLEMENTED:
- APPLY WATER SPRAYS TO VEGETATION. • DAMPEN EXPOSED AREAS.
- ENSURE ALL LOADED TRUCKS ARE COVERED

DUST MANAGEMENT NOTES

- 2. DUST CONTROL TECHNIQUES AND PRACTICES MAY INCLUDE, BUT MAY NOT BE LIMITED TO, THE FOLLOWING TO MINIMISE THE MOVEMENT OF DUST OFF-SITE:
 - THE PRE-CLEARING OF LAND WILL BE MINIMISED. NO VEGETATION
 - STRIPPING/CLEARING WILL OCCUR IN SITUATIONS OF HIGH WIND.
 - STABILISATION AND RE-VEGETATION OF FILL AREAS.
 - WATER CARTS OPERATING AS WARRANTED.
- VISUAL MONITORING IS TO BE UNDERTAKEN THROUGHOUT THE CONSTRUCTION PHASE.
 - DUST MONITORING DEVICES MAY NEED TO BE INSTALLED WHERE IDENTIFIED THROUGH MONITORING. THE CONTRACTOR IS TO ENSURE ANY DUST PRODUCTION IS KEPT TO A MINIMUM AND ACTION TAKEN ON ANY COMPLAINTS RECEIVED. IE VISIBLE DUST EMISSIONS ARE OBSERVED WORKS TO CEASE IMMEDIATELY UNTIL APPROPRIATE DUST CONTROL MEASURES CAN BE PUT IN PLACE.
- 4. THE CONTRACTOR SHALL MAINTAIN A DAILY RECORD OF SITE CONDITIONS AND THE DUST MANAGEMENT MEASURES IMPLEMENTED. COMPLAINTS BY RESIDENTS ARE TO BE RECORDED IN A COMPLAINTS REGISTER.
- DEPENDING ON THE SOURCE OF THE DUST THE FOLLOWING MEASURES WILL BE
- INCREASE NUMBER OF WATER TRUCKS IN OPERATION.
- CEASE OPERATIONS DURING PERIODS OF EXTREME WINDS.

6. PRIOR TO COMMENCEMENT OF BULK EARTHWORKS, THE CONTRACTOR IS RESPONSIBLE FOR THE INSTALLATION OF A SPRINKLER SYSTEM IF WATER TRUCK OPERATION IS NOT ABLE TO BE UNDERTAKEN. A 100mm MINIMUM DIAMETER PRESSURE MAIN IS TO BE LAID. THE EXACT ALIGNMENT TO BE DETERMINED ON SITE BY THE SUPERVISING ENGINEER. A DIESEL PUMP WITH PRESSURE REDUCING VALVE WILL OPERATE DURING BULK EARTHWORKS. VALVES WILL BE LOCATED AT 100m INTERVALS ALONG THE MAIN FROM WHICH 'EASYSHIFT' SPRINKLERS (OR APPROVED EQUIVALENT) CONNECT. SPRINKLERS ARE TO HAVE A MINIMUM CAPACITY OF 0.7 LITRES PER SECOND. A MINIMUM 16m SPREAD RADIUS AND TRAFFICABLE HOSES. THE CONTRACTOR SHALL ENSURE ALL EXPOSED EARTHWORK AREAS ARE WATERED AS REQUIRED LIMITING THE OCCURRENCE OF DUST TO A LEVEL ACCEPTABLE TO THE LOCAL COUNCIL.

EROSION AND SEDIMENT MANAGEMENT STRATEGY

OBECTIVE/TARGET	Comply Contro Sedimen
MANAGEMENT STRATEGY	CONTRAC FLOWS A SHOWN (SEDIMEN
TASKS/ACTIONS	ERECT SI SHOWN (
FREQUENCY/DEADLINE	CONTRAC
RESPONSIBLE PERSON/ ORGANISATION	CONTRAC CONTRO
REPORTING/REVIEW	SITE WOI REPAIR. ALL WAT DATES O REGISTE APPROVI
CORRECTIVE ACTIONS	IF EROSIO OR FAILE IS TO BE AMENDM PLANS. S SUPERIN

© Stantec Limited All Rights Reserved. his document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall no assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

Stantec Australia Pty Ltd ABN 17 007 820 322
Level 6, Springfield Tower, 145 Sinnathamby Boulevard
Springfield Central QLD 4300
Tel: 07 3381 0111
Web: www.stantec.com/au

Drawn C.V		Date 21/01/2020	Client KALFRESH PTY LTD
Checked C.D.B.		Date 20/02/2020	Project SCENIC RIM
Designed M.D.		Date 20/01/2020	AGRICULTURAL INDUSTRIAL
Verified		Date	
C.D.B.		20/02/2020	Title
Approved	CD CPESC 7619	Date	EROSION AND SEDIMENT CO CONSTRUCTION SEQUENCE

WITH THE EROSION AND SEDIMENT CONTROL PLAN AS SHOWN, TO L EROSION AND SEDIMENT TRANSPORT. ENSURE THAT ALL EROSION AND NT CONTROL DEVICES ARE OPERATIONAL AT ALL TIMES.

CTOR TO IDENTIFY AND CHECK DIRECTION OF STORMWATER OVER LAND AS SHOWN ON PLAN. PROVIDE BARRIERS AND OTHER CONTROL MEASURES ON THE PLAN TO PREVENT STORMWATER FLOWS OVER EMBANKMENTS. AND ITS INTO THE RECEIVING ENVIRONMENT

EDIMENTATION BARRIERS AT PERIMETER OF CONSTRUCTION AREAS AS ON EROSION AND SEDIMENT CONTROL PLAN.

CTOR TO INSPECT DEVICES AT LEAST WEEKLY AND PRIOR TO AND TELY FOLLOWING EACH SIGNIFICANT RAINFALL EVENT.

CTOR TO BE RESPONSIBLE FOR INSPECTIONS AND MAINTENANCE OF L DEVICES.

RKMEN TO ADVISE FOREMAN IF THEY NOTICE ANY CONTROLS NEEDING

FER QUALITY SAMPLING DATA INCLUDING DATES AND AMOUNTS OF RAINFALL, OF TESTING AND WATER RELEASE MUST BE MAINTAINED IN AN ON-SITE ER. THIS REGISTER IS TO BE MAINTAINED FOR THE DURATION OF THE /ED WORKS, AND MADE AVAILABLE TO COUNCIL OFFICERS ON REQUEST ION AND SEDIMENT CONTROL DEVICES HAVE BEEN FOUND TO BE DEFICIENT ED IN SERVICE DUE TO UNFORSEEN CIRCUMSTANCES, CORRECTIVE ACTION UNDERTAKEN BY THE CONTRACTOR IMMEDIATELY WHICH MAY INCLUDE MENTS/ADDITIONS TO THE ORIGINAL EROSION AND SEDIMENT CONTROL SUCH ADDITIONS OR AMENDMENTS ARE TO BE APPROVED BY THE ITENDENT.

PIYLID										
INDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PURPOSES									
	DATUM	GRID	Scale	Size						
	AHD		AS SHOWN		A1					
	Drawing Number									
SEQUENCE	510	С								

CONSTRUCT LEVEL SPREADER 150mm LOWER THAN SURROUNDING FOREBAY TOP OF BATTER TO DIRECT FLOWS INTO SEDIMENT POND. INLET ZONE / EMBED 150X45mm TIMBER SECTION (50mm PROUD) INTO CONCRETE SEDIMENT FOREBAY BEAM LEVEL SPREADER CONSTRUCTED ACROSS TOP OF SPILLWAY. (MIN 5m LENGTH) AUTOMATED DOSING SYSTEM WHERE PRACTICAL (TYPE A & B SEDIMENT BASINS) SEDIMENT BASIN POND (LENGTH) **INSTALL MARKER POST TO IDENTIFY OPTIONAL** ALL FLOWS TO BE DIRECTED TO SEDIMENT STORAGE ZONE LEVEL INTERNAL SEDIMENT BASIN FOREBAY VIA BAFFLES AUTOMATED DOSING SYSTEM 1.0 MIN 1(V):2(H) SETTLING ZONE FREE WATER ZONE - TYPE A ONL SEDIMENT STORAGE ZONE SEDIMENT BASIN BATTERS TO BE STABILISED WITH GEOTEXTILE / BLACK PLASTIC / VARIES CONCRETE DEPENDENT ON SOIL PROPERTIES TYPICAL TYPE A / B SEDIMENT BASIN EXAMPLE PROFILE

TABLE 1 - 'IDEAL SIZED' TYPE B SEDIMENT BASIN CONCEPTUAL DETAILS

DEVICE ID	CATCHMENT	CATCHMENT AREA (ha)	SIDE BATTERS	BASIN LENGTH @ MID-ZONE DEPTH (m)	BASIN WIDTH @ MID-ZONE DEPTH (m)	BASIN AREA @ MID-ZONE DEPTH (m ²)	SETTLING ZONE DEPTH (m)	SEDIMENT STORAGE DEPTH (m)	TOTAL DEPTH FROM SPILLWAY (m)	SETTLING ZONE VOLUME (m ³)	SEDIMENT STORAGE VOLUME (m ³)	TOTAL BASIN STORAGE VOLUME (m ³)	INLET ZONE LENGTH (m)	INLET ZONE WIDTH (m)	INLET ZONE DEPTH (m)	EMERGENCY SPILLWAY LENGTH (m)	Q20 SPILLWAY DEPTH (m)	FREEBOARD (m)
SB-2A	C_2A	3.54	1 IN 3	90	30	2685	0.50	0.20	0.70	1343	403	1745	9	31	1.0	30	0.08	0.3
SB-2B	C_2B	3.92	1 IN 3	93	31	2904	0.52	0.20	0.72	1510	453	1963	9	33	1.0	31	0.09	0.3
SB-2C	C_2C	3.13	1 IN 3	84	28	2373	0.50	0.20	0.70	1186	356	1542	9	30	1.0	28	0.08	0.3
SB-2E	C_2E	2.74	1 IN 3	77	26	1978	0.50	0.20	0.70	989	297	1285	8	27	1.0	26	0.07	0.3
SB-2F	C_2F	2.01	1 IN 3	67	22	1486	0.50	0.20	0.70	743	223	966	7	24	1.0	22	0.07	0.3
SB-2G	C_2G	2.02	1 IN 3	68	23	1531	0.50	0.20	0.70	765	230	995	7	24	1.0	23	0.07	0.3
SB-2H	C_2H	1.57	1 IN 3	60	20	1192	0.50	0.20	0.70	596	179	775	6	21	1.0	20	0.06	0.3
SB-2I	C_2I	5.40	1 IN 3	110	37	3999	0.61	0.20	0.81	2439	732	3171	11	38	1.0	37	0.09	0.3
SB-2J	C_2J	4.97	1 IN 3	100	33	3342	0.56	0.20	0.76	1872	561	2433	10	35	1.0	33	0.09	0.3

TABLE 2 - 'IDEAL SIZED' TYPE A SEDIMENT BASIN CONCEPTUAL DETAILS

DEVICE ID	CATCHMENT	CATCHMENT AREA (ha)	SIDE BATTERS	BASIN LENGTH @ MID-ZONE DEPTH (m)	BASIN WIDTH @ MID-ZONE DEPTH (m)	BASIN AREA @ MID-ZONE DEPTH (m ²)	SETTLING ZONE DEPTH (m)	FREE WATER DEPTH (m)	SEDIMENT STORAGE DEPTH (m)	TOTAL DEPTH FROM SPILLWAY (m)	SETTLING ZONE VOLUME (m ³)	SEDIMENT STORAGE VOLUME (m ³)	FREE WATER ZONE STORAGE (m ³)	TOTAL BASIN STORAGE VOLUME (m ³)	INLET ZONE LENGTH @ MID-ZONE LEVEL (m)	INLET ZONE WIDTH (m)	INLET ZONE DEPTH (m)	EMERGENCY SPILLWAY LENGTH (m)	Q20 SPILLWAY DEPTH (m)	FREEBOARD (m)	No. OF DECENT ARMS
SB-2M	C_2M	3.66	1 IN 3	50	17	848	0.6	0.20	0.25	1.05	509	153	138	799	5.0	19	1.0	17	0.14	0.3	8
SB-2N	C_2N	4.04	1 IN 3	53	18	936	0.6	0.20	0.25	1.05	562	169	154	885	5.0	19	1.0	18	0.14	0.3	9
SB-20	C_20	5.74	1 IN 3	63	21	1329	0.6	0.20	0.23	1.03	797	239	227	1263	6.0	23	1.0	21	0.15	0.3	12
SB-2P	C_2P	0.97	1 IN 3	26	9	225	0.6	0.20	0.42	1.22	135	40	30	205	5.0	10	1.0	9	0.09	0.3	2

SEDIMENT BASIN NOTES

- 1. FOR IDEAL SIZED SEDIMENT BASIN THE NOTED MINIMUM AVERAGE SETTLING ZONE AREAS. LENGTHS AND WIDTHS ARE AT THE MID-DEPTH OF THE SETTLING ZONE. THE TOTAL BASIN DIMENSIONS NEED TO CONSIDER THE ADOPTED BATTERS SLOPES.
- 2. IDEAL SIZED SEDIMENT BASIN RECOMMENDED 3:1 EFFECTIVE LENGTH TO WIDTH RATIO.
- 3. BASIN DEPTH MINIMUM ADOPTED FOR COMBINED SETTLING, FREE WATER (TYPE A ONLY) AND STORAGE VOLUME.
- 4. ADDITIONAL 0.45m MINIMUM REQUIRED ABOVE FOR SPILLWAY HEIGHT AND FREEBOARD (0.3m)
- 5. FOR IDEAL SIZED SEDIMENT BASIN:
- SETTLING ZONE 0.6m MINIMUM DEPTH FOR TYPE A BASINS AND 0.5m MINIMUM DEPTH FOR TYPE B BASINS.
- FREE WATER ZONE DEPTH 0.2m MINIMUM DEPTH (TYPE A ONLY). - SEDIMENT STORAGE ZONE 0.2m MINIMUM DEPTH.
- 6. FOR IDEAL SIZED SEDIMENT BASIN, SEDIMENT STORAGE VOLUME BASED ON 30% OF SETTLING ZONE VOLUME. A MARKER SHALL BE PLACED WITHIN THE BASIN TO SHOW THE LEVEL AT WHICH THE SEDIMENT STORAGE ZONE DESIGN CAPACITY OCCURS.
- 7. FOR IDEAL SIZED SEDIMENT BASIN EMERGENCY SPILLWAY WEIR LENGTHS BASED ON CONVEYING THE 20 YEAR ARI PEAK DISCHARGE. FOR THE CONTRIBUTING CATCHMENT AREA, WITH A MAXIMUM DEPTH OVER THE WEIR OF 0.15m.
- SEDIMENT BASIN CUT/FILL BATTERS TO BE CONSTRUCTED TO TIE IN WITH THE EXISTING GROUND.
- 9. DEWATERING AND SPILLWAY OUTLET LOCATIONS ARE TO BE SPECIFIED ON SITE BY THE CONTRACTOR'S ENVIRONMENTAL MANAGER AND CONFIRMED BY THE SUPERINTENDENT.

SCALE A1 - 1:100

A3 - 1:200

- GEOTECHNICAL ENGINEER.
- PERIMETER FOR THE DURATION OF THE BASIN'S OPERATION
- AS INTERNAL BAFFLES.
- THE FOLLOWING:
- EXAMPLE BASIN PERFORMANCE REPORT
- SECTION B4 DEFAULT CONSTRUCTION SPECIFICATION.

						_	
						0 1 2 4 6 8 1	0m
							9
С	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.	.S. SCALE 1:100 @A	.1
В	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.	.S.	
Α	20/02/2020	ISSUE FOR APPROVAL	M.D.	C.D.B.	C.D.B.	.B.	
Rev.	Date	Description	Des.	Verif.	Appd.)d.	

(RE

D₅₀=200mm UNDERLAIN BY GEOFABRIC (BIDIM A24)

SEDIMENT BASIN MANAGEMENT NOTES

- TESTING OF pH, TOTAL SUSPENDED SOLIDS (TSS) AND TURBIDITY WITHIN ANY TEMPORARY SEDIMENT BASINS IS TO OCCUR PRIOR TO ANY CONTROLLED DISCHARGES FROM THE SITE AND AT THE FOLLOWING FREQUENCIES FOR THE DURATION OF THE CONSTRUCTION PHASE:
- IMMEDIATELY FOLLOWING RAIN EVENTS > 25mm IN A 24 HOUR PERIOD.
- 2. IF THE pH OR TSS / TURBIDITY READINGS ARE OUTSIDE THE ALLOWABLE RELEASE CRITERIA. THEN FURTHER DOSING WITH AN APPROPRIATE APPROVED COAGULANT AND / OR FLOCCULANT IS REQUIRED UNTIL ACCEPTABLE LEVELS ARE REACHED.
- 3. WATER QUALITY MONITORING RESULTS ARE TO BE RETAINED ON SITE AND BE MADE AVAILABLE FOR VIEWING UPON REQUEST.
- 4. PRIOR TO A RAINFALL EVENT. TO IMPROVE THE EFFICIENCY AND EFFECTIVENESS OF THE FLOCCULATION PROCESS, IT IS RECOMMENDED THAT THE CONTRACTOR UNDERTAKE TRIAL TESTING TO DETERMINE APPROPRIATE FLOCCULANT AND / OR COAGULANT TYPES, AND DOSING RATES FOR THE ON-SITE SOILS. THIS GENERALLY INVOLVES CONDUCTING SOIL JAR TESTS OF THE ON-SITE SOILS. FOR THE CHARACTERISTICS OF VARIOUS FLOCCULATING AGENTS REFER TO TABLE 1 IN THE 'CHEMICAL COAGULANTS AND FLOCCULANTS' FACT SHEET BY IECA. OBTAINABLE FROM THE IECA WEBSITE UNDER THE BEST PRACTICE EROSION AND SEDIMENT CONTROL 'APPENDIX B -REVISION JUNE 2018' SECTION. FOR DETAILS ON THE SOIL JAR TESTING PROCEDURE. REFER TO SECTION 5 OF THE FACT SHEET MENTIONED ABOVE.
- 5. MANAGING THE FLOCCULATION OF THE SEDIMENT BASINS SHOULD BE UNDERTAKEN USING AUTOMATED DOSING SYSTEMS SUCH AS RAINFALL OR FLOW ACTIVATED FLOCKING SYSTEMS. THIS WILL ALLOW MAXIMUM TIME FOR FLOCCULATION TO OCCUR TO ASSIST IN REDUCING THE RUNOFF HOLDING TIMES. THE EFFECTIVENESS OF THE FLOCCULANT WILL DETERMINE THE ACTUAL RUNOFF HOLDING TIMES FOR EACH BASIN. THE DETAILED METHODS FOR FLOCCULATION AND TYPES OF FLOCCULANTS TO BE USED ARE TO BE CONFIRMED BY THE CONTRACTOR.

10. WHERE ROCK IS ENCOUNTERED, THE CUT BATTER OF THE SEDIMENT BASIN MAY BE CONSTRUCTED WITH A NOMINAL BATTER SLOPE OF 1(V) : 1(H). FOR OTHER SOILS, THE CUT BATTER SLOPE SHALL BE CONSTRUCTED WITH A NOMINAL BATTER SLOPE OF 1(V) : 2(H) OR FLATTER IF IT IS CONSIDERED THAT THE 1(V) : 2(H) SLOPE IS NOT SUFFICIENTLY STABLE FOR THE SOILS ENCOUNTERED. APPROPRIATE BASIN BATTER SLOPES FOR THE ON SITE CONDITIONS ENCOUNTERED TO BE CONFIRMED BY GEOTECHNICAL ENGINEER. 11. EARTH EMBANKMENTS IN EXCESS OF 1m IN HEIGHT SHOULD BE CERTIFIED BY

12. IF BATTER SLOPES STEEPER THAN 1(V) : 4(H) ARE USED AROUND EDGE OF SEDIMENT BASIN, THEN SAFETY FENCING IS TO BE SUPPLIED TO THE FULL

13. TO INCREASE THE EFFECTIVE TREATMENT OF THE SEDIMENT BASINS. REFER TO SEDIMENT BASIN DESIGN. CONSTRUCTION. OPERATION AND MAINTENANCE GUIDELINES FOR DETAILS ON THE INCORPORATION OF ANCILLARY ITEMS SUCH

14. REFER IECA 'BEST PRACTICE EROSION AND SEDIMENT CONTROL' GUIDELINES APPENDIX B - SEDIMENT BASIN DESIGN AND OPERATION (REV. JUNE 2018) FOR

15. REFER ABOVE, TO IECA STD DWGS SD-SB-05 AND SD-SB-06, AND TO APPENDIX A OF THE WATER BY DESIGN SEDIMENT MANAGEMENT ON CONSTRUCTION SITES DOCUMENT FOR TYPICAL SEDIMENT BASIN DETAILS.

> This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall no assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

NOTE:

THE EROSION AND SEDIMENT STRATEGY SHOWN ON THIS PLAN IS CONCEPTUAL ONLY BASED ON THE SINGLE PHASE BULK EARTHWORKS CONTOURS PROVIDED. THE CONTRACTOR IS TO PREPARE AND MAINTAIN THEIR OWN EROSION AND SEDIMENT CONTROL PLANS, IN ACCORDANCE WITH THE IECA GUIDELINES. BASED UPON THEIR CHOSEN CONSTRUCTION METHODOLOGY AND SEQUENCING, AND THE PREVAILING SITE CONDITIONS FOR ALL PHASES OF THE WORKS (I.E. CLEARING AND GRUBBING, BULK EARTHWORKS, CIVIL WORKS AND SITE STABILISATION). ALL MEASURES ARE TO BE SUPPLEMENTED WITH MONITORING AND MAINTENANCE ON SITE. ADDITIONAL CONTROLS OR MODIFICATIONS TO WORK PRACTICES MAY BE REQUIRED TO SUIT THE SITE CONDITIONS OR CONSTRUCTION SEQUENCING AS IDENTIFIED THROUGH ON-SITE MONITORING.

6.

9.

WHERE APPROPRIATE THE CONTRACTOR MAY ALSO CONSIDER PASSIVE APPLICATION TECHNIQUES OF COAGULANTS AND / OR FLOCCULANTS. SUCH AS 'FLOC BLOCKS' OR SIMILAR PLACED WITHIN CATCH DRAINS, TO IMPROVE THE EFFICIENCY AND EFFECTIVENESS OF THE FLOCCULATION PROCESS 7. TO ASSIST WITH THE PERFORMANCE OF THE SEDIMENT BASINS, IN-LINE

PERMEABLE INTERNAL BAFFLES CAN BE INCORPORATED ACROSS THE BASIN SETTLING ZONE PERPENDICULAR TO THE DIRECTION OF FLOW.

8. THE SEDIMENT BASINS MUST OPERATE AS WET BASINS. WITH THE TREATED RUNOFF TO BE DECANTED FROM THE BASINS ONCE COMPLIANT WITH THE 'DISCHARGE PERFORMANCE CRITERIA'. AS SOON AS CONDITIONS ALLOW, THE WATER LEVEL WITHIN THE BASINS SHOULD BE LOWERED BACK DOWN TO AT LEAST THE INVERT OF THE SETTLING ZONE. THIS WILL ALLOW THE SETTLING ZONE VOLUME OF THE BASINS TO BE AVAILABLE FOR THE NEXT RAINFALL EVENT.

IN THE EVENT THAT THE SEDIMENT BASIN CANNOT BE DE-WATERED TO RE-INSTATE THE SETTLING ZONE VOLUME PRIOR TO BEING SURCHARGED BY THE FOLLOWING RAINFALL EVENT, THE CONTRACTOR MUST RECORD THE OCCURRENCE OF SUCH AN EVENT AND REPORT IT TO THE LOCAL AUTHORITY. SUBJECT TO CONSULTATION WITH AND APPROVAL FROM THE LOCAL AUTHORITY, ALTERNATIVE OPERATING PROCEDURES FOR THE SEDIMENT BASINS MAY NEED TO BE ADOPTED IN ORDER TO ACHIEVE OPTIMUM ENVIRONMENTAL PROTECTION.

PTY LTD					
NDUSTRIAL PRECINCT	Status NOT TO BE U	FOR AP	PROVAL	N PU	RPOSES
	DATUM AHD	GRID	Scale AS SHOWN	Size	A1
	Drawing Number	Revision			
E DETAILS	510	С			

THIS PLAN IS TO BE READ IN CONJUNCTION WITH NOTES AND LEGEND ON DRG. 510357-008-CI-1020,

CONSTRUCTION OF BY-PASS CHANNEL TO BE STAGED, WITH STAGING TO BE CONFIRMED BY CONTRACTOR. WHERE PRACTICAL ACTIVE CONSTRUCTION AREAS SHOULD BE ISOLATED OFF-LINE TO EXTERNAL CATCHMENT LOW FLOWS. WHERE PRACTICAL CONSTRUCT AND STABILISE A LOW FLOW DIVERSION CHANNEL TO ALLOW EXTERNAL CATCHMENT LOW FLOWS TO BE CONVEYED EITHER THROUGH OR AROUND ACTIVE CONSTRUCTION AREAS.

ALL DISTURBED SURFACES OTHER THAN CHANNEL WORKS AREAS TO BE EITHER ADEQUATELY SEALED, STABILISED OR VEGETATED TO THE DESIGN REQUIREMENTS WITHIN 20 DAYS OF COMPLETION OF SITE WORKS DURING MONTHS WITH MODERATE EROSION RISK, AND WITHIN 10 DAYS DURING MONTHS WITH HIGH EROSION RISK.

CHANNEL WORKS AREAS, INCLUDING BATTERS, TO BE ADEQUATELY STABILISED (100% COVERAGE) OR VEGETATED TO THE DESIGN REQUIREMENTS WITHIN 10 DAYS OF COMPLETION OF WORKS DURING MONTHS WITH MODERATE EROSION RISK, AND WITHIN 5 DAYS DURING MONTHS WITH HIGH EROSION RISK. ADDITIONAL EROSION CONTROL METHODS, SUCH AS HYDRAULICALLY APPLIED SOIL BINDERS/BLANKETS, MAY NEED TO BE APPLIED IF VEGETATION COVERAGE OF 100%

BATTER SLOPES DOWNSTREAM OF SEDIMENT BASIN TEMPORARY SPILLWAYS TO BE ADEQUATELY

CONTRACTOR TO REVIEW EROSION AND SEDIMENT CONTROL STRATEGY FOR THE BORROW PIT AREAS FOLLOWING CONFIRMATION OF THE CONSTRUCTION TIMING AND EXTENT OF WORKS AREA, WITH THE STRATEGY TO BE REVISED AS NECESSARY TO SUIT.

CONTRACTOR TO REVIEW EROSION AND SEDIMENT CONTROL STRATEGY FOR THE EARTHWORKS ASSOCIATED WITH THE PROPOSED WATER STORAGE DAM FOLLOWING CONFIRMATION OF THE CONSTRUCTION TIMING. ADDITIONAL SEDIMENT CONTROLS, SUCH AS A SEDIMENT BASIN, MAY BE REQUIRED IF THE WORKS IS TIMED SEPARATELY TO THE PROPOSED BY-PASS CHANNEL CONSTRUCTION WORKS.

> NOTE: THE EROSION AND SEDIMENT STRATEGY SHOWN ON THIS PLAN IS CONCEPTUAL ONLY BASED ON THE SINGLE PHASE BULK EARTHWORKS CONTOURS PROVIDED. THE CONTRACTOR IS TO PREPARE AND MAINTAIN THEIR OWN EROSION AND SEDIMENT CONTROL PLANS, IN ACCORDANCE WITH THE IECA GUIDELINES, BASED UPON THEIR CHOSEN CONSTRUCTION METHODOLOGY AND SEQUENCING, AND THE PREVAILING SITE CONDITIONS FOR ALL PHASES OF THE WORKS (I.E. CLEARING AND GRUBBING, BULK EARTHWORKS, CIVIL WORKS AND SITE STABILISATION). ALL MEASURES ARE TO BE SUPPLEMENTED WITH MONITORING AND MAINTENANCE ON SITE. ADDITIONAL CONTROLS OR MODIFICATIONS TO WORK PRACTICES MAY BE REQUIRED TO SUIT THE SITE CONDITIONS OR CONSTRUCTION SEQUENCING AS IDENTIFIED THROUGH ON-SITE MONITORING.

NDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PURPOSES					
	DATUM AHD	GRID	Scale AS SHOWN	Size A1		
EDIMENT CONTROL JT PLAN	Drawing Number 510	357-008-0	CI-1023	Revis	sion D	

$\left \begin{array}{c} g_{0,0} \\ g_{0,0} \\ g_{1,0} \\ g_{2,0} \\ g_{2,0$	93.0 93.0 93.0 6 89.0 6 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0	91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0	LY IN ACCORDANCE)		84.0 83.0
			FUTURE CONNECTING	S ROAD	19.138 ha
	PROSE	OPOSED 4.0m WIDE RVICES EASEMENT.		84.0 Y 83.0 Y 84.0	
		3.810 ha	BUL DU LE CONTRACTION DE LA CO	9 6.335 ha	
	2	3.810 ha	.0m WIDE - ASEMENT	e.335 have been been been been been been been be	NINGHAM HIGHWA

LOT 3

SP192221

R

Drawn	Date		: С Н Г
C.V	21/01/2020		.0111
Checked	Date	Project OOFNUO DU	
B.W.	20/02/2020	SCENIC RI	VI
Designed	Date	AGRICULTI	JRAL I
M.D.	20/01/2020	//0///0021	
/erified	Date		
J.O.S.	20/02/2020	Title	
Approved	RPEQ. 19706		
1 Ach	×22/02/2023	BULK EART	THWOF
Digitally signed by JOHN O'SULLIVAN for	STANTEC AUSTRALIA Pty Ltd Date		
<u> </u>	22/02/2023		

WARNING!

BEWARE OF UNDERGROUND SERVICES THE LOCATIONS OF UNDERGROUND SERVICES HAVE BEEN INTERPOLATED FROM GIS DATA OR KNOWN POSITIONS OF VALVES, MANHOLES ETC OR INFORMATION SUPPLIED BY SERVICE AUTHORITIES. NO RESPONSIBILITY IS TAKEN FOR THE ACCURACY OF THE INTERPOLATED INFORMATION SUPPLIED. ENSURE ALL SERVICES ARE ACCURATELY LOCATED PRIOR TO COMMENCEMENT OF WORK.

BATTER NOTE: ALL BATTER SLOPES AND STABILITY TO BE CONFIRMED BY GEOTECHNICAL CONSULTANTS DURING CONSTRUCTION. BATTERS STEEPER THAN 1 IN 4 (25%) ARE TO BE HYDROMULCHED; BATTERS LESS THAN 1 IN 4 (25%) TO BE MULCHED AND LANDSCAPED; TABLE DRAINS STEEPER THAN 1 IN 4 (25%) ARE TO BE ROCKED; TABLE DRAINS LESS THAN 1 IN 4 (25%) TO BE TURF LINED OR AS SPECIFIED BY SUPERINTENDENT.

<u>NOTE:</u> REFER DRG. 510357-008-CI-1034 FOR EARTHWORKS VOLUMES AND DRG. 510357-008-CI-1035 FOR SETOUT TABLES.

LEGEND

	EARTHWORKS CUT
	EARTHWORKS FILL
	LANDSCAPE EASEMENT
	EXISTING PROPERTY BOUNDARY
	PROPOSED PROPERTY BOUNDARY
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	PROPOSED OVERLAND FLOWPATH
	STAGE BOUNDARY
Υ	TOP OF BATTER
I	BOTTOM OF BATTER
- — 82.0 - — — —	EARTHWORKS CONTOURS (0.25m)
82.0	EXISTING CONTOURS (0.25m)
	V-DRAIN

PTY LTD						
NDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PURPOS					
	DATUM	GRID	Scale	Size		
	AHD		AS SHOWN		A1	
	Drawing Number	Revision				
AN	510357-008-CI-1031				D	

XR-CUTF XR-CONT-BULK-EW BULK EARTHWOR -EXST; TAILED Ę

WARNING! BEWARE OF UNDERGROUND SERVICES THE LOCATIONS OF UNDERGROUND SERVICES HAVE BEEN INTERPOLATED FROM GIS DATA OR KNOWN POSITIONS OF VALVES, MANHOLES ETC OR INFORMATION SUPPLIED BY SERVICE AUTHORITIES. NO RESPONSIBILITY IS TAKEN FOR THE ACCURACY OF THE INTERPOLATED INFORMATION SUPPLIED. ENSURE ALL SERVICES ARE ACCURATELY LOCATED PRIOR TO COMMENCEMENT OF WORK.

BATTER NOTE:

- ALL BATTER SLOPES AND STABILITY TO BE CONFIRMED BY GEOTECHNICAL CONSULTANTS DURING CONSTRUCTION.
- BATTERS STEEPER THAN 1 IN 4 (25%) ARE TO BE HYDROMULCHED;
- BATTERS LESS THAN 1 IN 4 (25%) TO BE MULCHED AND LANDSCAPED;
- TABLE DRAINS STEEPER THAN 1 IN 4 (25%) ARE TO BE ROCKED; TABLE DRAINS LESS THAN 1 IN 4 (25%) TO BE TURF
- LINED OR AS SPECIFIED BY SUPERINTENDENT.

<u>NOTE:</u> REFER DRG. 510357-008-CI-1034 FOR EARTHWORKS VOLUMES AND DRG. 510357-008-CI-1035 FOR SETOUT TABLES.

LEGEND

Ŷ
82.0
82.0

EARTHWORKS CUT EARTHWORKS FILL LANDSCAPE EASEMENT EXISTING PROPERTY BOUNDARY PROPOSED PROPERTY BOUNDARY STAGE BOUNDARY TOP OF BATTER BOTTOM OF BATTER EARTHWORKS CONTOURS (0.25m) EXISTING CONTOURS (0.25m)

PTY LTD					
NDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PUF				
	DATUM AHD	GRID	Scale AS SHOWN	Size	A1
ΔΝΙ	Drawing Number				Revision
AN	510357-008-CI-1032				С

NOC ; XR-DSGN-OP2; 57-008-CI-1031-1 Ľ. XR-CUTF XR-CONT-BULK EAI EXST;

rawn C.V	Date 21/01/2020	Client KALFRESH
hecked B.W.	Date 20/02/2020	Project SCENIC RIM
esigned M.D.	Date 20/01/2020	AGRICULTURAL
erified	Date	
J.O.S.	20/02/2020	Title
pproved	RPEQ. 19706	CUT AND FILL PL SHEET 3

WARNING! BEWARE OF UNDERGROUND SERVICES THE LOCATIONS OF UNDERGROUND SERVICES HAVE BEEN INTERPOLATED FROM GIS DATA OR KNOWN POSITIONS OF VALVES, MANHOLES ETC OR INFORMATION SUPPLIED BY SERVICE AUTHORITIES. NO RESPONSIBILITY IS TAKEN FOR THE ACCURACY OF THE INTERPOLATED INFORMATION SUPPLIED. ENSURE ALL

SERVICES ARE ACCURATELY LOCATED PRIOR TO COMMENCEMENT OF WORK.

BATTER NOTE: ALL BATTER SLOPES AND STABILITY TO BE CONFIRMED BY GEOTECHNICAL CONSULTANTS DURING CONSTRUCTION. BATTERS STEEPER THAN 1 IN 4 (25%) ARE TO BE HYDROMULCHED; BATTERS LESS THAN 1 IN 4 (25%) TO BE MULCHED AND LANDSCAPED; TABLE DRAINS STEEPER THAN 1 IN 4 (25%) ARE TO BE ROCKED; TABLE DRAINS LESS THAN 1 IN 4 (25%) TO BE TURF LINED OR AS SPECIFIED BY SUPERINTENDENT.

<u>NOTE:</u> REFER DRG. 510357-008-CI-1034 FOR EARTHWORKS VOLUMES AND DRG. 510357-008-CI-1035 FOR SETOUT TABLES.

LEGEND

	EARTHWORKS CUT
	EARTHWORKS FILL
	EXISTING PROPERTY BOUNDARY
	PROPOSED PROPERTY BOUNDARY
	STAGE BOUNDARY
γ	TOP OF BATTER
I	BOTTOM OF BATTER
— — — -82.0- — — —	EARTHWORKS CONTOURS (0.25m)
82.0	EXISTING CONTOURS (0.25m)
	V-DRAIN

PTY LTD						
NDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PURPOSES					
	DATUM AHD	GRID	Scale AS SHOWN	Size	A1	
	Drawing Number				Revision	
AN	510	357-008-0	CI-1033		D	

WARNING!

BEWARE OF UNDERGROUND SERVICES THE LOCATIONS OF UNDERGROUND SERVICES HAVE BEEN INTERPOLATED FROM GIS DATA OR KNOWN POSITIONS OF VALVES, MANHOLES ETC OR INFORMATION SUPPLIED BY SERVICE AUTHORITIES. NO RESPONSIBILITY IS TAKEN FOR THE ACCURACY OF THE INTERPOLATED INFORMATION SUPPLIED. ENSURE ALL SERVICES ARE ACCURATELY LOCATED PRIOR TO COMMENCEMENT OF WORK.

BATTER NOTE: ALL BATTER SLOPES AND STABILITY TO BE CONFIRMED BY GEOTECHNICAL CONSULTANTS DURING CONSTRUCTION. BATTERS STEEPER THAN 1 IN 4 (25%) ARE TO BE HYDROMULCHED; BATTERS LESS THAN 1 IN 4 (25%) TO BE MULCHED AND LANDSCAPED; TABLE DRAINS STEEPER THAN 1 IN 4 (25%) ARE TO BE ROCKED: TABLE DRAINS LESS THAN 1 IN 4 (25%) TO BE TURF LINED OR AS SPECIFIED BY SUPERINTENDENT.

<u>NOTE:</u> REFER DRG. 510357-008-CI-1035 FOR SETOUT TABLES.

LEGEND

	EARTHWORKS CUT
	EARTHWORKS FILL
	EXISTING PROPERTY BOUNDARY
	PROPOSED PROPERTY BOUNDARY
	STAGE BOUNDARY
<u> </u>	TOP OF BATTER
I	BOTTOM OF BATTER
— — — - 82.0 - — — —	EARTHWORKS CONTOURS (0.25m)
	EXISTING CONTOURS (0.25m)
>>	V-DRAIN
	BILLABONG REFUGE - REFER FISH MITIGATION REPORT FOR DETAILS

PTY LTD						
NDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PURPOSES					
	DATUM AHD	GRID	Scale AS SHOWN	Size	A1	
ΔΝ	Drawing Number				Revision	
AN	510	357-008-0	CI-1034		D	

PT No.EASTINGNORTHINGF1458487.8266908096.330842458302.9136908238.274853458387.1556908355.542864458571.7906908228.230855458433.2716908328.738866458392.6726908353.149867458424.9096908368.030868458410.8966908378.098859458419.8886908400.0168410458387.9016908356.2378611458200.9856908316.5378512458191.3506908344.9348413458191.1626908393.3738414458203.4506908435.5058515458204.4916908588.9468417458310.9886908585.9208418458437.9916908583.3378419458345.4306908583.3378421458301.3586908605.4538423458312.8586908583.2508424458431.796690850.6128525458526.3136908603.1468326458376.8006908737.7058427458444.4226908854.4898328458608.0766908743.8028329458726.2176908870.2138030458397.6556908413.8168231458575.321690880.7988332458	
1 458487.826 6908096.330 84 2 458302.913 6908238.274 85 3 458387.155 6908355.542 86 4 458571.790 6908228.230 85 5 458433.271 6908328.738 86 6 458392.672 6908353.149 86 7 458424.909 6908368.030 86 8 458410.896 6908378.098 85 9 458419.888 6908400.016 84 10 458387.901 6908356.237 86 11 458200.985 6908316.537 85 12 458191.350 6908344.934 84 13 458191.162 6908393.373 84 14 458203.450 6908435.505 85 15 458204.491 6908585.920 84 17 458310.988 6908585.59 85 20 458301.358 6908605.453 84 21 458301.358 6908588.250 </th <th>KL.</th>	KL.
2 458302.913 6908238.274 85 3 458387.155 6908355.542 86 4 458571.790 6908228.230 85 5 458433.271 6908328.738 86 6 458392.672 6908353.149 86 7 458424.909 6908368.030 86 8 458410.896 6908378.098 85 9 458419.888 6908400.016 84 10 458387.901 6908336.237 86 11 458200.985 6908316.537 85 12 458191.350 6908344.934 84 13 458191.162 6908393.373 84 14 458203.450 6908435.505 85 15 458204.491 6908585.920 84 17 458310.988 6908585.920 84 17 458301.358 6908583.337 84 20 458301.358 6908583.337 84 21 458301.358 6908505.612	.903
3 456367.133 6908353.542 86 4 458571.790 6908228.230 85 5 458433.271 6908328.738 86 6 458392.672 6908353.149 86 7 458424.909 6908368.030 86 8 458410.896 6908378.098 85 9 458419.888 6908400.016 84 10 458387.901 6908356.237 86 11 458200.985 6908316.537 85 12 458191.350 6908344.934 84 13 458191.162 6908393.373 84 13 458203.450 6908435.505 85 15 458204.491 6908439.072 85 16 458290.394 6908585.920 84 17 458310.988 6908583.337 84 20 458301.358 6908605.453 84 21 458301.358 6908605.453 84 22 458301.358 6908505.61	.750
4 4000111130 0000220.200 000 5 458433.271 6908328.738 86 6 458392.672 6908353.149 86 7 458424.909 6908368.030 86 8 458410.896 6908378.098 85 9 458419.888 6908400.016 84 10 458387.901 6908356.237 86 11 458200.985 6908316.537 85 12 458191.350 6908344.934 84 13 458191.350 69083435.505 85 15 458203.450 6908439.072 85 16 458290.394 6908585.920 84 17 458310.988 6908507.374 84 19 458345.430 6908583.337 84 20 458301.358 6908605.453 84 21 458301.358 6908606.086 84 23 458312.858 6908505.612 85 25 458526.313 6908630	.310
6 458392.672 6908353.149 86 7 458424.909 6908368.030 86 8 458410.896 6908378.098 85 9 458419.888 6908400.016 84 10 458387.901 6908356.237 86 11 458200.985 6908316.537 85 12 458191.350 6908344.934 84 13 458191.162 6908393.373 84 14 458203.450 6908439.072 85 15 458204.491 6908588.946 84 17 458310.988 6908585.920 84 18 458437.991 6908585.559 85 20 458309.324 6908583.337 84 21 458301.358 6908605.453 84 22 458301.761 6908606.086 84 23 458312.858 6908505.612 85 25 458526.313 6908630.146 83 26 458376.800 6908737	.100
7 458424.909 6908368.030 86 8 458410.896 6908378.098 85 9 458419.888 6908400.016 84 10 458387.901 6908356.237 86 11 458200.985 6908316.537 85 12 458191.350 6908344.934 84 13 458191.162 6908393.373 84 14 458203.450 6908435.505 85 15 458204.491 6908588.946 84 17 458310.988 6908585.920 84 18 458437.991 6908507.374 84 19 458301.358 6908583.337 84 20 458301.358 6908605.453 84 21 458301.358 6908505.612 85 25 458526.313 6908630.146 83 26 458376.800 6908737.705 84 27 458444.422 6908854.489 83 28 458608.076 690870	.269
8 458410.896 6908378.098 85 9 458419.888 6908400.016 84 10 458387.901 6908356.237 86 11 458200.985 6908316.537 85 12 458191.350 6908344.934 84 13 458191.162 6908393.373 84 14 458203.450 6908435.505 85 15 458204.491 6908439.072 85 16 458290.394 6908588.946 84 17 458310.988 6908507.374 84 19 458345.430 6908583.337 84 20 458301.358 6908605.453 84 21 458301.358 6908605.453 84 22 458301.358 6908505.612 85 25 458526.313 6908605.453 84 23 458312.858 6908505.612 85 25 458526.313 6908605.453 84 26 458376.800 69087	.271
9 458419.888 6908400.016 84 10 458387.901 6908356.237 86 11 458200.985 6908316.537 85 12 458191.350 6908344.934 84 13 458191.162 6908393.373 84 14 458203.450 6908435.505 85 15 458204.491 6908588.946 84 17 458310.988 6908585.920 84 18 458437.991 6908585.920 84 19 458345.430 6908585.920 84 19 458309.324 6908583.337 84 20 458301.358 6908605.453 84 21 458301.358 6908606.086 84 23 458312.858 6908505.612 85 25 458526.313 6908630.146 83 26 458376.800 6908737.705 84 27 458444.422 6908854.489 83 28 458608.076 6908	.959
10 458387.301 6908336.237 80 11 458200.985 6908316.537 85 12 458191.350 6908344.934 84 13 458191.162 6908393.373 84 14 458203.450 6908435.505 85 15 458204.491 6908439.072 85 16 458290.394 6908588.946 84 17 458310.988 6908507.374 84 19 458345.430 6908583.337 84 20 458301.358 6908605.453 84 21 458301.358 6908606.086 84 23 458312.858 6908505.612 85 25 458526.313 6908630.146 83 26 458376.800 6908737.705 84 27 458444.422 6908854.489 83 28 458608.076 690870.213 80 30 458397.65 6908413.816 82 31 458575.321 69088	.365
11 456260.366 6506010.001 65 12 458191.350 6908344.934 84 13 458191.162 6908393.373 84 14 458203.450 6908435.505 85 15 458200.394 6908588.946 84 17 458310.988 6908585.920 84 18 458437.991 6908507.374 84 19 458309.324 6908583.337 84 20 458301.358 6908605.453 84 21 458301.358 6908505.612 85 22 458301.761 6908505.612 85 23 458312.858 6908505.612 85 25 458526.313 6908603.146 83 26 458376.800 6908737.705 84 27 458444.422 6908854.489 83 28 458608.076 6908743.802 83 29 458726.217 6908870.213 80 30 458397.765 690	.320
13458191.1626908393.3738414458203.4506908435.5058515458204.4916908439.0728516458290.3946908588.9468417458310.9886908585.9208418458437.9916908507.3748419458345.4306908385.5598520458309.3246908605.4538421458301.3586908605.4538422458301.7616908505.6128523458312.8586908588.2508424458431.7966908505.6128525458526.3136908630.1468326458376.8006908737.7058427458444.4226908854.4898328458608.0766908743.8028329458726.2176908870.2138030458397.7656908413.8168231458575.3216908880.7988332458613.6556908965.1368233458613.6556908965.13682	.985
14458203.4506908435.5058515458204.4916908439.0728516458290.3946908588.9468417458310.9886908585.9208418458437.9916908507.3748419458345.4306908385.5598520458309.3246908583.3378421458301.3586908605.4538422458301.7616908606.0868423458312.8586908505.6128525458526.3136908630.1468326458376.8006908737.7058427458444.4226908854.4898328458608.0766908743.8028329458375.3216908880.7988330458397.7656908413.8168231458575.3216908880.7988332458613.6556908965.1368233458613.6556908965.13682	.972
15458204.4916908439.0728516458290.3946908588.9468417458310.9886908585.9208418458437.9916908507.3748419458345.4306908385.5598520458309.3246908583.3378421458301.3586908605.4538422458301.7616908505.6128423458312.8586908505.6128525458526.3136908630.1468326458376.8006908737.7058427458444.4226908854.4898328458608.0766908743.8028330458397.7656908413.8168231458575.3216908880.7988332458613.6556908965.1368233458613.6556908965.13682	.066
16458290.3946908588.9468417458310.9886908585.9208418458437.9916908507.3748419458345.4306908385.5598520458309.3246908583.3378421458301.3586908605.4538422458301.7616908606.0868423458312.8586908588.2508424458431.7966908505.6128525458526.3136908630.1468326458376.8006908737.7058427458444.4226908854.4898328458608.0766908743.8028330458397.7656908413.8168231458575.3216908880.7988332458629.1116908965.1368233458613.6556908965.13682	.074
17 458310.988 6908585.920 84 18 458437.991 6908507.374 84 19 458345.430 6908385.559 85 20 458309.324 6908583.337 84 21 458301.358 6908605.453 84 22 458301.358 6908606.086 84 23 458312.858 6908588.250 84 24 458431.796 6908505.612 85 25 458526.313 6908630.146 83 26 458376.800 6908737.705 84 27 458444.422 6908854.489 83 28 458608.076 690870.213 80 30 458397.765 6908413.816 82 31 458575.321 6908880.798 83 32 458613.655 6908955.568 82 33 458613.655 6908965.136 82	.187
10 450401.001 0000001.014 04 19 458345.430 6908385.559 85 20 458309.324 6908583.337 84 21 458301.358 6908605.453 84 22 458301.761 6908606.086 84 23 458312.858 6908505.612 85 24 458431.796 6908505.612 85 25 458526.313 6908630.146 83 26 458376.800 6908737.705 84 27 458444.422 6908854.489 83 28 458608.076 6908743.802 83 29 458726.217 6908870.213 80 30 458397.765 6908413.816 82 31 458575.321 6908880.798 83 32 458629.111 6908955.568 82 33 458613.655 6908965.136 82	.250
20 458309.324 6908583.337 84 21 458301.358 6908605.453 84 22 458301.761 6908606.086 84 23 458312.858 6908505.612 85 24 458431.796 6908505.612 85 25 458526.313 6908630.146 83 26 458376.800 6908737.705 84 27 458444.422 6908854.489 83 28 458608.076 6908743.802 83 29 458726.217 6908870.213 80 30 458397.765 6908413.816 82 31 458575.321 6908880.798 83 32 458629.111 6908955.568 82 33 458613.655 6908965.136 82	.800
21458301.3586908605.4538422458301.7616908606.0868423458312.8586908588.2508424458431.7966908505.6128525458526.3136908630.1468326458376.8006908737.7058427458444.4226908854.4898328458608.0766908743.8028329458726.2176908870.2138030458397.7656908413.8168231458575.3216908880.7988332458629.1116908955.5688233458613.6556908965.13682	.408
22458301.7616908606.0868423458312.8586908588.2508424458431.7966908505.6128525458526.3136908630.1468326458376.8006908737.7058427458444.4226908854.4898328458608.0766908743.8028329458726.2176908870.2138030458397.7656908413.8168231458575.3216908880.7988332458613.6556908965.1368233458613.6556908965.13682	.264
23 458312.858 6908588.250 84 24 458431.796 6908505.612 85 25 458526.313 6908630.146 83 26 458376.800 6908737.705 84 27 458444.422 6908854.489 83 28 458608.076 6908743.802 83 29 458726.217 6908870.213 80 30 458397.765 6908413.816 82 31 458575.321 6908855.568 82 33 458613.655 6908965.136 82	.471
24 458431.796 6908505.612 85 25 458526.313 6908630.146 83 26 458376.800 6908737.705 84 27 458444.422 6908854.489 83 28 458608.076 6908743.802 83 29 458726.217 6908870.213 80 30 458397.765 6908413.816 82 31 458575.321 6908880.798 83 32 458629.111 6908955.568 82 33 458613.655 6908965.136 82	.387
25 456520.315 0900030.140 85 26 458376.800 6908737.705 84 27 458444.422 6908854.489 83 28 458608.076 6908743.802 83 29 458726.217 6908870.213 80 30 458397.765 6908413.816 82 31 458575.321 6908880.798 83 32 458629.111 6908955.568 82 33 458613.655 6908965.136 82	.124
27 458444.422 6908854.489 83 28 458608.076 6908743.802 83 29 458726.217 6908870.213 80 30 458397.765 6908413.816 82 31 458575.321 6908880.798 83 32 458629.111 6908955.568 82 33 458613.655 6908965.136 82	.073
28 458608.076 6908743.802 83 29 458726.217 6908870.213 80 30 458397.765 6908413.816 82 31 458575.321 6908880.798 83 32 458629.111 6908955.568 82 33 458613.655 6908965.136 82	.928
29458726.2176908870.2138030458397.7656908413.8168231458575.3216908880.7988332458629.1116908955.5688233458613.6556908965.13682	.312
30 458397.765 6908413.816 82 31 458575.321 6908880.798 83 32 458629.111 6908955.568 82 33 458613.655 6908965.136 82	.500
31 458575.321 6906660.796 63 32 458629.111 6908955.568 82 33 458613.655 6908965.136 82	.749
33 458613.655 6908965.136 82	.337
	.909
	.993
35 458522.872 6908804.968 83	.628
<u>36</u> 458522.194 6908808.086 83	.816
<u>38</u> <u>458470 776</u> <u>6908897 864</u> <u>83</u>	.555
39 458497.151 6908927.204 83	.192
40 458547.956 6908969.673 82	.917
41 458579.968 6908989.486 82	.785
42 458701.159 6908903.833 82	.349
43 458705.173 6908878.771 82 44 458486.462 6908492.557 84	.609 424
45 458552.479 6908584.345 83	.972
46 458605.581 6908664.989 83	.574
47 458773.646 6908544.665 84	.192
48 458721.969 6908465.380 84	.583
49 458823.945 6908621.904 83	.811
51 458704 761 6908802 854 82	.204
52 458661.926 6908818.513 82	.944
53 458740.615 6908852.694 82	.628
54 458766.413 6908857.540 82	.501
55 458833.273 6908807.686 82 56 458803.736 6000704.000 000	.840
<u>57</u> <u>458901 450</u> 6908761.988 83	.150 190
58 458896.418 6908739.664 83	.229
59 458939.392 6908803.159 82	.507
60 458904.750 6908797.975 83	193
61 458842.337 6908843.436 82 60 450000.505 600000.110 600000.000	
b2 458b28.565 6908999.142 82 63 458701.618 6008045.022 92	.997
64 458743.723 6908915.264 82	.997 .780 755
65 458602.559 6909015.611 82	.997 .780 .755 .731
66 458613.707 6909023.067 82	.997 .780 .755 .731 .796

	SETOU	T POINTS	
PT No.	EASTING	NORTHING	RL.
67	458664.243	6909034.155	82.533
68	458720.627	6909033.804	82.304
69	458762.091	6909028.958	82.135
70	458835.000	6909022.194	80.340
71	458754.799	6908910.627	80.450
72	458837.570	6909011.230	81.974
73	458824.355	6909020.730	81.918
74	458922.047	6908952.870	82.369
75	458998.935	6908896.867	82.698
76	458995.762	6908899.178	82.691
77	459104.901	6909076.693	81.420
78	459101.785	6909085.493	81.384
79	458717.071	6909205.537	80.535
80	458480.822	6908087.096	81.999
81	458278.226	6908243.604	81.760
82	458192.609	6908309.478	81.540
83	458181.157	6908343.232	81.593
84	458180.949	6908396.572	81.512
85	458194.286	6908442.297	81.499
86	458287.201	6908602.946	81.325
87	458368.653	6908743.566	81.146
88	458440.985	6908865.766	81.281
89	458465.209	6908902.452	80.935
90	458491.692	6908932.167	80.899
91	458544.606	6908974.609	80.875
92	458575.809	6908995.599	80.460
93	458593.563	6909017.763	80.724
94	458611.414	6909029.056	80.764
95	458662.816	6909039.714	80.886
96	458720.443	6909039.092	80.590
97	458786.172	6909031.400	80.335
98	458831.202	6909025.367	80.195
99	458919.591	6908961.167	80.529
100	458475.960	6908078.473	82.000
101	458046.262	6908345.800	81.689
102	458042.870	6908359.865	81.690
103	458080.689	6908418.594	81.534
104	458065.956	6908480.330	81.580
105	458068.018	6908510.132	81.588
106	458130.095	6908669.018	81.481
107	458135,185	6908693,565	81.478
108	458131.905	6908718.419	81.495
109	458092.696	6908845.520	81.652
110	458096.520	6908867.803	81.649
111	458116.753	6908877.889	81.603
112	458306.620	6908876.615	81.086
113	458326.378	6908886.083	81.036
114	458385.402	6908960.532	80.919
115	458489 704	6909062 203	80,789
116	458511 928	6909075 830	80.625
117	458497 678	6909073 387	81.322
118	458486 244	6909082 995	83 026
119	458425 933	6909184 672	95 029
120	458662 203	6909124 203	80.523
120		0000124.200	00.000

С	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.
В	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.
Α	20/02/2020	ISSUE FOR APPROVAL	M.D.	B.W.	J.O.S.
Rev.	Date	Description	Des.	Verif.	Appd.

© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

Drawn C.V	Date Cli 21/01/2020	KALFRESH
Checked B.W.	Date Pro 20/02/2020	^{oject} SCENIC RIM
Designed M.D.	Date 20/01/2020	AGRICULTURAL
Verified	Date	
J.O.S.	20/02/2020 Tit	le
Approved	RPEQ. 19706 22/02/2023 Ner STANTEC AUSTRALIA PY LM 22/02/2023	BULK EARTHWO SETOUT TABLES

I PTY LTD					
	Status				
L INDUSTRIAL PRECINCT					
	DATUM	GRID	Scale	Size	
	AHD		AS SHOWN		A1
	Drawing Number				Revision
S	510	357-008-0	CI-1035		С

						H:	: 0		20	40	60	80	100m
D	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.	V·	· 0		2	4	6	8	 10m
С	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.	•.	ŠC	CALE: H	1:1:1000 V:1:100		Ũ	Ũ	@A1
В	14/04/2020	FISH MITIGATION MEASURES ADDED	B.J.F.	B.W.	J.O.S.								
A	20/02/2020	ISSUE FOR APPROVAL	M.D.	B.W.	J.O.S.								
Rev.	Date	Description	Des.	Verif.	Appd.								

÷
÷
Ģ
ക്
õ
ò
Ŀ.
22
8
\neq
ŝ
Ś
ğ
⊒.
≥
σ,
ň
1
3
×
ц <u>к</u>
\mathcal{O}
\leq
Í
Ē
R
∢
шĬ
\checkmark
È
5
m
H.
ш
=
4

ä
÷
<u>.</u>
8
ğ
\leq
ίΩ
с,
8
÷.
2
σ
at
Ö
\sim
õ
ц2
<u>0</u>
S,
Ľ,
≪
_

ISHED SURFACE LEVEL	

PTY LTD							
INDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PURPOSES						
	DATUM AHD	GRID		Size	Δ1		
	Drawing Number		AS SHOWN		Revision		
RKS SITE SECTIONS	510357-008-CI-1037						

OP2; Ķ

Drawn	Date	
C.V	21/01/2020	NALFREODI
Checked	Date	Project OOFNUO DINA
B.W.	20/02/2020	SCENIC RIM
Designed	Date	AGRICUI TURAL I
M.D.	20/01/2020	
/erified	Date	
J.O.S.	20/02/2020	Title
Approved	RPEQ. 19706	
1 Ach	M22/02/2023	CONTROL LINE
Digitally signed by JOHN O'SULLIVAN for	STANTEC AUSTRALIA Pty Ltd Date	
	22/02/2023	

T	ROL LI	NE SETO	UT TABLE		
3	HEIGHT	BEARING	RAD/SPIRAL	A.LENGTH	DEFL.ANGLE
	81.990	304°54'02.06"			
	81.581	304°54'02.06"			
	81.489		R = 115.000	172.890	86°08'15.96"
	81.398	31°02'18.02"			
	80.932	31°02'18.02"			
	80.834	31°02'18.02"			
	80.378		R = 400.000	338.889	48°32'32.07"
	79.799	79°34'50.08"			
	80.171		R = 400.000	66.270	9°29'32.85"
	80.140	89°04'22.93"			
	80.091		R = -100.000	104.280	59°44'52.12"
	80.042	29°19'30.81"			
	80.000	29°19'30.81"			

MC02 CONROL LINE - ROAD 2

G	HEIGHT	BEARING	RAD/SPIRAL	A.LENGTH	DEFL.ANGLE
)	84.111	215°43'51.81"			
2	84.280		R = -50.000	19.952	22°51'49.20"
0	84.540				
3	85.087		R = 20.000	39.397	112°51'51.01"
1	85.294	305°43'53.63"			
0	84.914		R = 20.000	39.397	112°51'51.01"
)	84.448				
3	84.229		R = -50.000	19.953	22°51'52.81"
5	84.091	35°43'51.83"			
1	83.278	35°43'51.83"			
1	82.439	35°43'51.83"			

	MC01 CONTROL LINE - ROAD 1										
PT	CHAINAGE	EASTING	NORTHING	HEIGHT	BEARING						
IP 1	0.000	458935.282	6908754.520	82.038	306°04'07.67"						
IP 2	133.507	458827.367	6908833.123	82.243							
IP 3	422.035	458594.147	6909002.995	81.828	306°04'07.67"						

WARNING BEWARE OF UNDERGROUND SERVICES THE LOCATION OF UNDERGROUND SERVICES HAVE BEEN INTERPOLATED FROM GIS DATA OR KNOWN POSITIONS OF VALVES, MANHOLES ETC. OR INFORMATION SUPPLIED BY SERVICE AUTHORITIES. NO RESPONSIBILITY IS TAKEN FOR THE ACCURACY OF THE INTERPOLATED INFORMATION SUPPLIED. ENSURE ALL SERVICES ARE ACCURATELY LOCATED PRIOR TO COMMENCEMENT OF WORK

LEGEND

	_	
	_	

 CONTROL LINE EXISTING PROPERTY BOUNDARY PROPOSED PROPERTY BOUNDARY

PTY LTD					
INDUSTRIAL PRECINCT	Status NOT TO BE l	FOR AP	PROVAL	N PU	RPOSES
		GRID	Scale	Size	A.4
	AHD		AS SHOWN		AT
	Drawing Number				Revision
	510	357-008-0	CI-1110		D

	CUNNINGHAM HIGHW	CH 16.704 RL 81.668	F		PROFILE	BL	JLK EARTH		KS
VERT. CURVE LENGTH (m) VERT. CURVE RADIUS (m) VERT. GEOMETRY GRADE (%) VERT. GEOMETRY LENGTH(m) DATUM RL 62.000	-3 13	W MODE NTP CH 7.954 RL 81.799 W MODE NTP CH 13.204 RL 81.642 W M MODE NTP CH 13.204 RL 81.642 W M M M M M M M M M M M M M M M M M M M					<u>0.600%</u> 202.710m		
HORZ. CURVE LENGTH (m) HORZ. CURVE RADIUS (m) LHS BOXING	96	41	61	81	10	21	41	22	61
LEVELS RHS BOXING	96 81.5	26 81.2 41 81.2	61 81.3	81 81.4	01 81.6	21 81.7	41 81.8	22 81.9	61 81.9
LEVELS DESIGN LEVEL	8 81.5	8 81.2 3 81.2	3 81.30	3 81.4	3 81.60	3 81.7	3 81.8	4 81.9	3 81.9
	82.03	81.66 81.68	81.80	81.92	82.04	82.16	82.28	82.36	82.40
TO EXISTING SURFACE	0.000	0000.0	0000	0.000	0000	0.000	0.000	00000	0000
EXISTING SURFACE LEVELS	81.884	80.855 80.793	80.686	80.717	80.489	80.437	80.611	80.612	80.565
BOXING LEVEL BELOW KERB FACE	82.038	81.668 81.683	81.803	81.923	82.043	82.163	82.283	82.364	82.403
CONTROL LINE CHAINAGE	000.0	16.704 20.000	40.000	60.000	80.000	100.000	120.000	133.507	140.000
	MC01 SCALE: H	H 1:1000 V 1:100							

Drawn C.V	Date 21/01/2020	Client KALFRESH
Checked B.W.	Date 20/02/2020	Project SCENIC RIM
Designed M.D.	Date 20/01/2020	AGRICULTURAL
Verified	Date	
J.O.S.	20/02/2020	Title
Approved	RPEQ. 19706 22/02/2023 NO GULLIVAN BE STANTEC AUSTRALIA PIJ LIS 22/02/2023	MC01 LONGITUD

I PTY LTD					
L INDUSTRIAL PRECINCT	Status NOT TO BE U	FOR AP	PROVAL	N PU	RPOSES
	DATUM	GRID	Scale	Size	
	AHD		AS SHOWN		A1
	Drawing Number				Revision
DINAL SECTION	510		С		

						H:	0	20	40	60
						٧·	0	2	4	6
С	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.	۷.	SCALE: I	H:1:1000 V:1:1	00 - 00	0
В	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.					
Α	20/02/2020	ISSUE FOR APPROVAL	M.D.	B.W.	J.O.S.					
Rev.	Date	Description	Des.	Verif.	Appd.					

MC02	
SCALE: H 1:1000 V 1:100	

MC01 CH 0.000

	·	TNIO4 MC	H -21.073 RL 81.7								
]		5								
					~~~~~					//-~	~~^\~~~
		CH -29.896 RL 81.913 -24.896 RL 81.763	H-19.896 KL 81./83								
VERT. CURVE LENGTH (m) VERT. CURVE RADIUS (m) VERT. GEOMETRY GRADE (%) VERT. GEOMETRY LENGTH(m) DATUM RL 62.000	- 1	10.000 R 294.2 2.999% 1.172m	) d  /								
HORZ. CURVE LENGTH (m) HORZ. CURVE RADIUS (m)											
DESIGN LEVEL KERB FACE	82.598	82.354	82.345 82.345 87.367	206.20	82.522	82,602	82.682	82.762	87 847	82 922	83.002
EXISTING SURFACE LEVELS	80.634	80.414	80.547 80.705	60.7.00 80.771	80.718	80.757	80.835	80.826	80 920	81.020	80.857
CUT / FILL DEPTH TO EXISTING SURFACE	1.964	1.866	1.736	160.1	1.805	1.845	1.847	1.937	1 922	1 902	2.145
BOXING LEVEL BELOW KERB FACE	82.098	81.780	81.782	01.002 81 942	82.022	82,102	82.182	82.262	CPC C8	82 422	82.502
CONTROL LINE CHAINAGE INVERT CENTRELINE	-36.068	-21.073	-20.000		40.000	60.000	80.000	100.000	120.000	140 000	160 000

![](_page_19_Figure_5.jpeg)

© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

100m

10m

@A1

![](_page_19_Picture_7.jpeg)

Drawn C.V	Date 21/01/2020	Client KALFRESH
Checked B.W.	Date 20/02/2020	Project SCENIC RIM
Designed M.D.	Date 20/01/2020	AGRICULTURAL
Verified	Date	<b>T</b> '0-
Approved	RPEQ. 19706	MC02 LONGITUD
Digitally signed by JOHN O'SULLIVAN fr	or STANTEC AUSTRALIA Pty Ltd. Date 22/02/2023	SHEET 1

PTY LTD					
INDUSTRIAL PRECINCT	Status NOT TO BE U	FOR AP	PROVAL	N PU	RPOSES
PTY LTD INDUSTRIAL PRECINCT	DATUM	GRID	Scale	Size	
	AHD		AS SHOWN		A1
DINAL SECTION	Drawing Number				Revision
	510	357-008-0	CI-1131		С

	a\5103-57\008 - DETAILED BULK EARTHWORKS\Drawings\510357-008-CI-113(	
	ta\5103	
	s02\da	
	usflcfs	(
	∋: \\A	E
E.S.	) File	A
Å.	CAL	Re

						H	l: 0	20	40	60	80	100m
						V	· 0	2	4	6	8	 10m
С	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.	,	ŠC/	ALE: H:1:1000 V:1:100	•	Ũ	Ŭ	@A1
В	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.							
A	20/02/2020	ISSUE FOR APPROVAL	M.D.	B.W.	J.O.S.							
lev.	Date	Description	Des.	Verif.	Appd.							

MC02
SCALE: H 1:1000 V 1:100

					LOW POINT CH 684.401 RL 83.537					CH 767.889 RL 83.702								FINAL F	ROAD P	ROFILE -		BULK EAF	RTHWORK	(S SURF/	ACE –	l	EX	ISTING SL	RFACE				
				+	0																•												
									 	~~																1							
																		~~~~~	~~~~										~~~~~				
VERT. CURVE LENGTH (m) VERT. CURVE RADIUS (m) VERT. GEOMETRY GRADE (%) VERT. GEOMETRY LENGTH(m) DATUM RL 62.000		-2.3 62.1	30 R 1 371% 778m	H 0000 IP CH 671.735 RL 83.510	→ VTP CH 686.735 RL 83.540		<u>0.200</u> 9 96.154	<u>6</u> m		P CH 767.889 RL 83.702														-0.40 489.5	00% 584m								
HORZ. CURVE LENGTH (m) HORZ. CURVE RADIUS (m)	R	9.397m 20.000mF	19.953m R -50.000	1 <u></u> m																													
DESIGN LEVEL KERB FACE	84.670	84.448	84.292	84.091 84.046	84.037	84.066	84.106	84.146	84.186	84.202 84.454	94.134	84.074	83.994	83.914	788 88	+00.00	83.754	83.674	83.594	83.514	83.434	83 351		83.2/4	83.194	83.114	83.034	82.954		82.874	82.794	82.714	87 621
EXISTING SURFACE LEVELS	82.574	82.527	82.514	82.435 82.421	82.373	82.328	82.225	82.099	82.582	82.355 87 122	02.120	82.025	82.005	81.896	R1 R36	000.10	81.765	81.683	81.640	81.544	81.410	001 13		81.314	81.091	81.210	80.858	81.003		80.945	80.937	80.852	002.00
CUT / FILL DEPTH TO EXISTING SURFACE	2.095	1.921	1.//8	1.656 1.625	1.664	1.738	1.882	2.048	1.604	1.047 2.021	1 20.2	2.048	1.988	2.018	1 997	100.1	1.989	1.991	1.953	1.969	2.023	1 03/		ACK.1	2.102	1.903	2.176	1.950		1.929	1.857	1.861	1 836 2
BOXING LEVEL BELOW KERB FACE	84.169	83.948	83.792	83.591 83.546	83.537	83.566	83.606	83.646	83.686	83./UZ 82.664	03.034	83.574	83.494	83.414	725 28	+00.00	83.254	83.174	83.094	83.014	82.934	87 854		82.114	82.694	82.614	82.534	82.454		82.374	82.294	82.214	121
CONTROL LINE CHAINAGE INVERT CENTRELINE	643.932	653.266	660.000	673.219 680.000	684.401	700.000	720.000	740.000	760.000	780.000	00,000	800.000	820.000	840.000	RED DOD	000.000	880.000	000.006	920.000	940.000	000.096			1000.000	1020.000	1040.000	1060.000	1080.000		1100.000	1120.000	1140.000	1160 000

© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

Drawn C.V	Date 21/01/2020	Client KALFRESH
Checked B.W.	Date 20/02/2020	Project SCENIC RIM
Designed M.D.	Date 20/01/2020	AGRICULTURAL
Verified	Date	
J.O.S.	20/02/2020	Title
Approved	RPEQ. 19706 22/02/2023 AN 165 STANTEC AUSTRALIA PY LIS 22/02/2023	MC02 LONGITUD SHEET 2

PTY LTD					
INDUSTRIAL PRECINCT	Status NOT TO BE U	FOR AP	PROVAL	N PU	RPOSES
		GRID		Size	۸1
	ΑΠΟ		AS SHOWN		AI
	Drawing Number				Revision
INAL SECTION	510		С		

							•		4.0				400
						H:	0	20	40	ť	50	80	100m
D	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.	V	0	2	4		6	8	 10m
С	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.	• ·	ŠCALE: H	1:1:1000 V:1:100			•	U	@A1
В	14/04/2020	FISH MITIGATION MEASURES ADDED	B.J.F.	B.W.	J.O.S.								
Α	20/02/2020	ISSUE FOR APPROVAL	M.D.	B.W.	J.O.S.								
Rev.	Date	Description	Des.	Verif.	Appd.								

TD01 - FLOOD DIVERSION CHANNEL
SCALE: H 1:1000
V 1:100

	<u> </u>							FINISHED SURFA	CE -				[- EXISTING	SURFACE												
													<u>_</u>						T]	`~~^\`~~	γ					
																						` ^	^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~			
							E		KS SURFACE																		
VERT. CURVE LENGTH (m)																											
VERT. CURVE RADIUS (m)																											
VERT. GEOMETRY GRADE (%) VERT. GEOMETRY LENGTH(m) DATUM RL 67.000													1	-0.106% 069.659m													
HORZ. CURVE LENGTH (m) HORZ. CURVE RADIUS (m)																V			172.890n R 115.000	m			~				
LHS BULK EWRK LEVELS EDGE OF CHANNEL	81.852	81.833 81.814	81.795	81.776 81 757	81.738	81.719	81.700 81.681	81.662	01.043 81.625	81.606	81.588	81.569	81.551	81.533	81.514	81.496 81.490	81.480 81.476	81.485	81.519	81.423	81.386	81.406	81.441 81.441	81.433	81.408	81.395	81.383 81.370
RHS BULK EWRK LEVELS EDGE OF CHANNEL		81.833 81.814 81.814	81.796	81.777 81 758	81.739	81.721	81.702 81.683	81.665	01.040 81.627	81.608	81.589	81.571	81.552	81.533	81.514	81.490 81.480	81.445	81.448	81.415 81.385	81.361	81.353	81.345	81.340 81.340	81.349 81.358	81.335	81.313	81.291 81.269
EXISTING SURFACE LEVELS CHANNEL CENTRELINE	84.449	84.378 84.206	84.183	84.144 84.080	83.983	83.840	83.812 84.022	84.206	04.213 84.240	84.291	84.105	83.925	83.801	83.634	83.511	83.622 83.631	83.590 83.530	83.637	83.519 83.510 83.510	83.376	83.469	82.853	82.494 82.495	82.374	82.492	82.572	82.506 82.454
CUT / FILL DEPTH TO EXISTING SURFACE	-2.459	-2.409 -2.259	-2.256	-2.239 -2.106	-2.120	-1.998	-1.991 -2.223	-2.428	-2.505	-2.577	-2.411	-2.253	-2.149	-2.004	-1.902	-2.034 -2.050	-2.024 2.086	-2.113	-2.016 2.038	-1.915	-2.029	-1.435	-1.096 -1.098	-0.998 -1.083	-1.158	-1.260	-1.215 -1.184
BULK EARTHWORKS LEVELS CHANNEL CENTRELINE	81.990	81.969 81.948	81.926	81.905 81.844	81.863	81.842	81.821 81.799	81.778	81.736	81.715	81.694	81.672	81.651	81.630	81.609	81.588 81.581	81.566 81.546	81.524	81.503	81.461	81.439	81.418	81.398 81.397	81.376 81 355	81.334	81.312	81.291 81.270
CONTROL LINE CHAINAGE CHANNEL CENTRELINE	0.000	20.000 40.000	60.000	80.000 100 000	120.000	140.000	160.000 180.000	200.000	240.000	260.000	280.000	300.000	320.000	340.000	360.000	<u>380.000</u> 386.375	400.000	440.000	460.000	500.000	520.000	540.000	559.264 560.000	580.000	620.000	640.000	660.000 680.000

© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

Drawn C.V	Date 21/01/2020	Client KALFRESH
Checked B.W.	Date 20/02/2020	Project SCENIC RIM
Designed M.D.	Date 20/01/2020	AGRICULTURAL
Verified	Date	
J.O.S.	20/02/2020	Title
Approved Digitally slighed by JOHN O'SUI	RPEQ. 19706	TD01 LONGITUD SHEET 1

PTY LTD									
INDUSTRIAL PRECINCT	Status NOT TO BE U	FOR AP	PROVAL	N PU	RPOSES				
		GRID		Size	۸1				
	AND		AS SHOWN		AI				
NAL SECTION	Drawing Number		Revision						
	510357-008-CI-1133								

- 800													
03-57\													
ata\51(
)2\da							H:	0	20	40	60	80	100n
lcfsC	D	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.	V·	0	2	4	6	8	 10m
Ausf	С	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.	v.	ŠCA	LE: H:1:1000 V:1:100		0	Ũ	@A1
e: ∖	В	14/04/2020	FISH MITIGATION MEASURES ADDED	B.J.F.	B.W.	J.O.S.							
EF's:	Α	20/02/2020	ISSUE FOR APPROVAL	M.D.	B.W.	J.O.S.							
XRE CAE	Rev.	Date	Description	Des.	Verif.	Appd.							

TD01 - FLOOD DIVERSION CHANNEL SCALE: H 1:1000 V 1:100

					1			FINISHED S	SURFACE		~~~			·~~-T		EXISTING SU	RFACE	S	TART OF LO		DRAIN -			1		-	POINT	HIGH POINT CH 1185.000 RL 80.436
	_										1																LOW CH 117	
								BULK EARTH	HWORKS :	SURFAC	E																	
																					069.659 RL 80.858	089.000 RL 80.538				155.000 RL 80.467	176.000 RL 79.236	185.000 RL 80.436
																					==P CH 10							
VERT. CURVE LENGTH (m) VERT. CURVE RADIUS (m) VERT. GEOMETRY GRADE (%) VERT. GEOMETRY LENGTH(m) DATUM RL 67.000											-0.106% 1069.659m										-1.65	51% 41m		<u>-0,108%</u> 66,000m		<u>-13.333% -C</u> 9.000m 1;	<u>).261% 13</u> 2.000m 9.	<u>}.333%</u> .000m
HORZ. CURVE LENGTH (m) HORZ. CURVE RADIUS (m)																					-							+
LHS BULK EWRK LEVELS EDGE OF CHANNEL	81.370	81.357	81.345	81.332	81.326	81.338	81.372	81.407	81.441	81.476	81.505	81.488	81.412	81.307	81.201	81.096	80.990	80.902	80.871	80.843	80.830 80.828 80.815	80.803	80.790	80.767	80.748	80.734 80.729 80.725	80.714 80.710	80.705
RHS BULK EWRK LEVELS EDGE OF CHANNEL	81.269	81.247	81.225	81.203	81.181	81.159	81.137	81.115	81.093	81.071	81.049	81.027	81.005	80.983	80.961	80.939	80.917	80.895	80.873	80.852	80.840 80.831	80.822	80.811	80.788	80.769	80.753 80.747 80.742	80.731 80.738	80.723
EXISTING SURFACE LEVELS CHANNEL CENTRELINE	82.454	82.406	82.347	82.368	82.491	82.211	82.082	82.074	82.155	82.276	82.080	82.142	81.960	82.086	82.084	82.099	82.046	81.982	81.902	82.084	82.041 82.044 82.046	82.089	82.025	82.769	83.829	84.816 85.138 85.387	86.059 86.187	86.380
CUT / FILL DEPTH TO EXISTING SURFACE	-1.184	-1.157	-1.120	-1.162	-1.305	-1.047	-0.939	-0.952	-1.054	-1.196	-1.022	-1.105	-0.944	-1.091	-1.110	-1.146	-1.115	-1.072	-1.013	-1.216	-1.183 -1.210 -1.359	-1.551	-1.498	-2.264	-3.346	-4.349 -5.338 -6.120	-6.823 -6.417	-5.944
BULK EARTHWORKS LEVELS CHANNEL CENTRELINE	81.270	81.249	81.228	81.207	81.185	81.164	81.143	81.122	81.101	81.080	81.058	81.037	81.016	80.995	80.974	80.953	80.931	80.910	80.889	80.868	80.858 80.834 80.687	80.538	80.526	80.505	80.483	80.467 79.801 79.267	79.236 70.769	80.436
CONTROL LINE CHAINAGE CHANNEL CENTRELINE	680.000	700.000	720.000	740.000	760.000	780.000	800.000	820.000	840.000	860.000	880.000	000.006	920.000	940.000	000.096	980.000	1000.000	1020.000	1040.000	1060.000	1069.659 1071.111 1080.000	1089.000	1100.000	1120.000	1140.000	1155.000 1160.000 1164.000	1176.000 1180.000	1185.000

DATE PLOTTED: 22 February 2023 2:52 PM BY : PAULO

© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

Drawn C.V	Date 21/01/2020	Client KALFRESH
Checked B.W.	Date 20/02/2020	Project SCENIC RIM
Designed M.D.	Date 20/01/2020	AGRICULTURAL
Verified	Date	
J.O.S.	20/02/2020	Title
Approved Digitally sligned by JOHN	RPEQ. 19706 22/02/2023 Date 22/02/2023	TD01 LONGITUDI SHEET 2

PTY LTD					
INDUSTRIAL PRECINCT	Status NOT TO BE U	FOR AP	PROVAL	N PU	RPOSES
	DATUM AHD	GRID	_{Scale} AS SHOWN	Size	A1
INAL SECTION	Drawing Number	Revision			
	510	D			

						H:	0	20	40	60	80	100m
D	22/02/2023	SITE LAYOUT UPDATED	H.T.	B.W.	J.O.S.	V.	0	2	4	6	8	 10m
С	01/02/2023	DESIGN AMENDED	H.T.	B.W.	J.O.S.		ŠCAI	LE: H:1:1000 V:1:100		C C	Ũ	@A1
В	14/04/2020	FISH MITIGATION MEASURES ADDED	B.J.F.	B.W.	J.O.S.							
А	20/02/2020	ISSUE FOR APPROVAL	M.D.	B.W.	J.O.S.							
Rev.	Date	Description	Des.	Verif.	Appd.]						

SCALE: H 1:1000 V 1:100

TD01 - FLOOD DIVERSION CHANNEL

				CH 1404,000 RL 78,999	CH 1413.000 RL 80.199							
		⊐P CH 1382.000 RL 80.231		JP CH 1404.000 RL 78.999		- BILLABO	ONG REFU	GE				
VERT. CURVE LENGTH (m) VERT. CURVE RADIUS (m) VERT. GEOMETRY GRADE (%) VERT. GEOMETRY LENGTH(m) DATUM RL 67.000		-0.104% -13.3 197.000m 9.00	33% -0.2 0m 13.0	45% 13.3 00m 9.0	133% 00m						-0.09 212.3	94% 372m
HORZ. CURVE LENGTH (m) HORZ. CURVE RADIUS (m)	_	338.8 R 400.	89m 000m		-	66 R 4	5.270m 00.000m		<			104.280m R -100.000
LHS BULK EWRK LEVELS EDGE OF CHANNEL	80.514	80.490 80.488	80.477 80.466	80.461 80.454	80.450							
RHS BULK EWRK LEVELS EDGE OF CHANNEL	80.497	80.480 80.478	80.469 80.460	80.458 80.458	80.452							
EXISTING SURFACE LEVELS CHANNEL CENTRELINE	80.878	80.421 80.363	80.430 80 392	80.460 80.431	80.395 80.314	80.286	80.287	80.239	80.189	80.010	80.257	
CUT / FILL DEPTH TO EXISTING SURFACE	-0.624	-0.188 -0.132	-1.399 -1 383	-1.461 -0.632	-0.196 -0.121	-0.112	-0.131	-0.09	-0.052	0.107	-0.159	
BULK EARTHWORKS LEVELS CHANNEL CENTRELINE	80.254	80.233 80.231	79.031 79.009	79.799	80.199 80.193	80.174	80.155	80.140	80.136	80.118	80.099	
CONTROL LINE CHAINAGE CHANNEL CENTRELINE	1360.000	1380.000 1382.000	1391.000	1404.000 1410.000	1413.000 1420.000	1440.000	1460.000	1476.270	1480.000	1500.000	1520.000	

© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

Drawn C.V	Date 21/01/2020	KALFRESH
Checked B.W.	Date 20/02/2020	Project SCENIC RIM
Designed	Date	AGRICULTURAL
M.D.	20/01/2020	
Verified	Date	
J.O.S.	20/02/2020	Title
Approved	A RPEQ. 19706	
Digitally signed by JOHN O'SULL	122/02/2023 NAN for STANTEC AUSTRALIA PLY Los Date 22/02/2023	TD01 LONGITUD SHEET 3

I PTY LTD										
L INDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PURPC									
	DATUM AHD	GRID	Scale AS SHOWN	Size	A1					
	Drawing Number		Revision							
DINAL SECTION	510357-008-CI-1135									

CONT-BULK-EWRK-ETAILED BULK EAR

LEGEND

 Y	
-SWD-	
 26.0	

PROPERTY BOUNDARY TOP OF BATTER BOTTOM OF BATTER STORMWATER CULVERTS **DIVERSION CHANNEL** ---- SIGUE ---- FINISHED CONTOURS (0.25m)

ΡΤΥΙΤΟ										
INDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PURPOSES									
	DATUM AHD	GRID	Scale AS SHOWN	Size	A1					
PLAN	Drawing Number		Revision							
	510	D								

50n

@A'

SCALE 1:50

SCALE 1:500

H.T. B.W. J.O.S

H.T. B.W. J.O.S.

B.J.F. B.W. J.O.S.

M.D. B.W. J.O.S.

Des. Verif. Appd.

22/02/2023 SITE LAYOUT UPDATED

20/02/2020 ISSUE FOR APPROVAL

14/04/2020 FISH MITIGATION MEASURES ADDED

Description

01/02/2023 DESIGN AMENDED

Date

Rev

SETUUT PUINTS							
PT No.	EASTING	NORTHING					
3	458837.133	6909175.668					
4	458839.093	6909181.334					

Stantec Australia Pty Ltd | ABN 17 007 820 322 Level 6, Springfield Tower, 145 Sinnathamby Boulevard Springfield Central QLD 4300 Tel: 07 3381 0111 Web: www.stantec.com/au

Drawn C.V	Date 21/01/2020	Client KALFRESH
Checked B.W.	Date 20/02/2020	Project SCENIC RIM
Designed M.D.	Date 20/01/2020	AGRICULTURAL
Verified	Date	
J.O.S.	20/02/2020	Title
Approved	RPEQ. 19706	
Digitally, signed by JOHN O'SULLIVAN for	22/02/2023 x STANTEC AUSTRALIA Pty Ltd Date 22/02/2023	AND DETAILS

LEGEND

 Y	
-SWD-	
 26.0	

PROPERTY BOUNDARY TOP OF BATTER BOTTOM OF BATTER STORMWATER CULVERTS **DIVERSION CHANNEL** ----- S6.0 ----- FINISHED CONTOURS (0.25m)

PTY LTD					
INDUSTRIAL PRECINCT	Status FOR APPROVAL NOT TO BE USED FOR CONSTRUCTION PURPOSES				
	DATUM	GRID	Scale	Size	
	AHD		AS SHOWN		A1
	Drawing Number				Revision
	510357-008-CI-1302			D	