APPENDIX

EMR Search Certificates and Laboratory Certificates

HELIDON TO CALVERT ENVIRONMENTAL IMPACT STATEMENT

The Australian Government is deliverin Inland Rail through the Australian Rail Track Corporation (ARTC), in

APPENDIX

EMR Search Certificates and Laboratory Certificates

Appendix V1 EMR Search Certificates

HELIDON TO CALVERT ENVIRONMENTAL IMPACT STATEMENT

SEARCH RESPONSE

ENVIRONMENTAL MANAGEMENT REGISTER (EMR) CONTAMINATED LAND REGISTER (CLR)

Globalx Terrain Cathedral Square, West Tower Level 6, 410 Ann St Brisbane QLD 4000

Transaction ID: 50513130 EMR Site Id: 90591 15 February 2019

Client Reference: Cheque Number:

This response relates to a search request received for the site:

Lot: 3 Plan: SP235464

EMR RESULT

The above site IS included on the Environmental Management Register.

The site you have searched has been subdivided from the following site, which IS included on the EMR or the CLR.

Lot: 2 Plan: RP96384 Address: ADARE ROAD

GATTON NORTH 4343

The site has been subject to the following Notifiable Activity or Hazardous Contaminant. WASTE STORAGE, TREATMENT OR DISPOSAL - storing, treating, reprocessing or disposing of regulated waste (other than at the place it is generated), including operating a nightsoil disposal site or sewage treatment plant where the site or plant has a design capacity that is more than the equivalent of 50, 000 persons having sludge drying beds or on-site disposal facilities.

CLR RESULT

The above site is NOT included on the Contaminated Land Register.

ADDITIONAL ADVICE

All search responses include particulars of land listed in the EMR/CLR when the search was generated. The EMR/CLR does NOT include:-

- 1. land which is contaminated land (or a complete list of contamination) if DES has not been notified
- 2. land on which a notifiable activity is being or has been undertaken (or a complete list of activities) if DES has not been notified

If you have any queries in relation to this search please phone 13QGOV (13 74 68)

SEARCH RESPONSE

ENVIRONMENTAL MANAGEMENT REGISTER (EMR) CONTAMINATED LAND REGISTER (CLR)

Globalx Terrain Cathedral Square, West Tower Level 6, 410 Ann St Brisbane QLD 4000

Transaction ID: 50513131 EMR Site Id: 90592 15 February 2019

Client Reference: Cheque Number:

This response relates to a search request received for the site:

Lot: 4 Plan: SP235464

EMR RESULT

The above site IS included on the Environmental Management Register.

The site you have searched has been subdivided from the following site, which IS included on the EMR or the CLR.

Lot: 2 Plan: RP96384 Address: ADARE ROAD

GATTON NORTH 4343

The site has been subject to the following Notifiable Activity or Hazardous Contaminant. WASTE STORAGE, TREATMENT OR DISPOSAL - storing, treating, reprocessing or disposing of regulated waste (other than at the place it is generated), including operating a nightsoil disposal site or sewage treatment plant where the site or plant has a design capacity that is more than the equivalent of 50, 000 persons having sludge drying beds or on-site disposal facilities.

CLR RESULT

The above site is NOT included on the Contaminated Land Register.

ADDITIONAL ADVICE

All search responses include particulars of land listed in the EMR/CLR when the search was generated. The EMR/CLR does NOT include:-

- 1. land which is contaminated land (or a complete list of contamination) if DES has not been notified
- 2. land on which a notifiable activity is being or has been undertaken (or a complete list of activities) if DES has not been notified

If you have any queries in relation to this search please phone 13QGOV (13 74 68)

SEARCH RESPONSE

ENVIRONMENTAL MANAGEMENT REGISTER (EMR) CONTAMINATED LAND REGISTER (CLR)

Globalx Terrain Cathedral Square, West Tower Level 6, 410 Ann St Brisbane QLD 4000

Transaction ID: 50513133 EMR Site Id: 6387 15 February 2019

Client Reference: Cheque Number:

This response relates to a search request received for the site:

Lot: 11 Plan: CC807888

EMR RESULT

The above site IS included on the Environmental Management Register.

Lot: 11 Plan: CC807888 Address: 23 EAST STREET GATTON 4343

The site has been subject to the following Notifiable Activity or Hazardous Contaminant. LANDFILL - disposing of waste (excluding inert construction and demolition waste).

CLR RESULT

The above site is NOT included on the Contaminated Land Register.

ADDITIONAL ADVICE

All search responses include particulars of land listed in the EMR/CLR when the search was generated. The EMR/CLR does NOT include:-

- 1. land which is contaminated land (or a complete list of contamination) if DES has not been notified
- 2. land on which a notifiable activity is being or has been undertaken (or a complete list of activities) if DES has not been notified

If you have any queries in relation to this search please phone 13QGOV (13 74 68)

SEARCH RESPONSE

ENVIRONMENTAL MANAGEMENT REGISTER (EMR) CONTAMINATED LAND REGISTER (CLR)

Globalx Terrain Cathedral Square, West Tower Level 6, 410 Ann St Brisbane QLD 4000

Transaction ID: 50513132 EMR Site Id: 35900 15 February 2019

Client Reference: Cheque Number:

This response relates to a search request received for the site:

Lot: 35 Plan: CP846028

EMR RESULT

The above site IS included on the Environmental Management Register.

Lot: 35 Plan: CP846028

Address: TREATMENT PLANT ROAD GATTON NORTH 4343

The site has been subject to the following Notifiable Activity or Hazardous Contaminant.

LANDFILL - disposing of waste (excluding inert construction and demolition waste).

CLR RESULT

The above site is NOT included on the Contaminated Land Register.

ADDITIONAL ADVICE

All search responses include particulars of land listed in the EMR/CLR when the search was generated. The EMR/CLR does NOT include:-

- 1. land which is contaminated land (or a complete list of contamination) if DES has not been notified
- 2. land on which a notifiable activity is being or has been undertaken (or a complete list of activities) if DES has not been notified

If you have any queries in relation to this search please phone 13QGOV (13 74 68)

SEARCH RESPONSE

ENVIRONMENTAL MANAGEMENT REGISTER (EMR) CONTAMINATED LAND REGISTER (CLR)

Globalx Terrain Cathedral Square, West Tower Level 6, 410 Ann St Brisbane QLD 4000

Transaction ID: 50513113 EMR Site Id: 6331 15 February 2019

Client Reference: Cheque Number:

This response relates to a search request received for the site:

Lot: 125 Plan: CP907566

EMR RESULT

The above site IS included on the Environmental Management Register.

Lot: 125 Plan: CP907566 Address: AIRFORCE ROAD HELIDON 4344

The site has been subject to the following Notifiable Activity or Hazardous Contaminant. EXPLOSIVES PRODUCTION OR STORAGE - operating a factory under the *Explosives Act 1952*.

CLR RESULT

The above site is NOT included on the Contaminated Land Register.

ADDITIONAL ADVICE

All search responses include particulars of land listed in the EMR/CLR when the search was generated. The EMR/CLR does NOT include:-

- 1. land which is contaminated land (or a complete list of contamination) if DES has not been notified
- 2. land on which a notifiable activity is being or has been undertaken (or a complete list of activities) if DES has not been notified

If you have any queries in relation to this search please phone 13QGOV (13 74 68)

SEARCH RESPONSE

ENVIRONMENTAL MANAGEMENT REGISTER (EMR) CONTAMINATED LAND REGISTER (CLR)

Globalx Terrain Cathedral Square, West Tower Level 6, 410 Ann St Brisbane QLD 4000

Transaction ID: 50513112 EMR Site Id: 6399 15 February 2019

Client Reference: Cheque Number:

This response relates to a search request received for the site:

Lot: 145 Plan: CSH51

EMR RESULT

The above site IS included on the Environmental Management Register.

Lot: 145 Plan: CSH51 Address: CONNORS ROAD HELIDON 4344

The site has been subject to the following Notifiable Activity or Hazardous Contaminant. LANDFILL - disposing of waste (excluding inert construction and demolition waste).

CLR RESULT

The above site is NOT included on the Contaminated Land Register.

ADDITIONAL ADVICE

All search responses include particulars of land listed in the EMR/CLR when the search was generated. The EMR/CLR does NOT include:-

- 1. land which is contaminated land (or a complete list of contamination) if DES has not been notified
- 2. land on which a notifiable activity is being or has been undertaken (or a complete list of activities) if DES has not been notified

If you have any queries in relation to this search please phone 13QGOV (13 74 68)

SEARCH RESPONSE

ENVIRONMENTAL MANAGEMENT REGISTER (EMR) CONTAMINATED LAND REGISTER (CLR)

Globalx Terrain Cathedral Square, West Tower Level 6, 410 Ann St Brisbane QLD 4000

Transaction ID: 50513141 EMR Site Id: 55322 15 February 2019

Cheque Number: Client Reference:

This response relates to a search request received for the site:

Lot: 362 Plan: SP117133

EMR RESULT

The above site IS included on the Environmental Management Register.

Lot: 362 Plan: SP117133

Address: GATTON

GATTON 4343

The site has been subject to contamination from a hazardous contaminant as follows:

HAZARDOUS CONTAMINANT - This site has been subject to a hazardous contaminant. Refer to the summary given below.

Possible high arsenic levels along rail corridor.

CLR RESULT

The above site is NOT included on the Contaminated Land Register.

ADDITIONAL ADVICE

All search responses include particulars of land listed in the EMR/CLR when the search was generated. The EMR/CLR does NOT include:-

- 1. land which is contaminated land (or a complete list of contamination) if DES has not been notified
- 2. land on which a notifiable activity is being or has been undertaken (or a complete list of activities) if DES has not been notified

If you have any queries in relation to this search please phone 13QGOV (13 74 68)

SEARCH RESPONSE

ENVIRONMENTAL MANAGEMENT REGISTER (EMR) CONTAMINATED LAND REGISTER (CLR)

Gloablx Terrain
Po Box 2746
Brisbane QLD 4069

Transaction ID: 50542084 EMR Site Id: 6437 10 July 2019

Client Reference: Cheque Number:

This response relates to a search request received for the site:

Lot: 184 Plan: CC3374

EMR RESULT

The above site IS included on the Environmental Management Register.

Lot: 184 Plan: CC3374

Address: WARREGO HIGHWAY

GATTON SOUTH 4343

The site has been subject to the following Notifiable Activity or Hazardous Contaminant.

LANDFILL - disposing of waste (excluding inert construction and demolition waste).

CLR RESULT

The above site is NOT included on the Contaminated Land Register.

ADDITIONAL ADVICE

All search responses include particulars of land listed in the EMR/CLR when the search was generated. The EMR/CLR does NOT include:-

- 1. land which is contaminated land (or a complete list of contamination) if DES has not been notified
- 2. land on which a notifiable activity is being or has been undertaken (or a complete list of activities) if DES has not been notified

If you have any queries in relation to this search please phone 13QGOV (13 74 68)

APPENDIX

EMR Search Certificates and Laboratory Certificates

Appendix V2 Soils (September 2018)

HELIDON TO CALVERT ENVIRONMENTAL IMPACT STATEMENT

T			Project ID:		Inland Rail	Hac										1	lient:	Eutur	e Freight	Joint Vo	inturo I	and Poss	ourcoc					
Aurecon			Project Nam	no:	Inland Rail												illettt.		8, 32 Tur				Juices					
Aurecon			Project Phas		Land Resou											4	ddress:	Level	6, 32 Tuli	טטנ אנ, ב	oiispaile ·	4000						
			Project Man		Adam And											ľ												
		Scheduling	Froject iviali	nager.	Addill Allu	erson					Cont	aminati	on								Storage				Completion			Completion
Schedule Prepare	ed Rv	1			Samples co	ontaminated	12								No				No. Tubes					Requested Return Date				
Schedule Approv		Adam Anderson				om Fire Ant			No						No. Bar						Comple		III Dute					
Request Date	veu by	24/09/2018			Details	011111111111111111111111111111111111111	LOIIC.								-110						ontainers	:				tion Date	P	
Test Request Ref	ference	20180924 H2C			Location of	f MSDS															tion (mo				Receive			
reservequeserver	ici ciicc	20100324_1120			LOCULION O	1111000	Ch	ain of C	ustody											necen	0111) 11013				neceive	u Dute		Additional Information
		Sender					CII	ani oi c	ustouy					R	eceiver								T					Additional information
Co	ompany	Name				Signatu	re			Con	npany				Name			Sig	gnature			Date	Ti	ne	ĺ			
6	Golder	Rob Cupper																							1			
·		пов саррел							1				1										1		1			
									1				1								1		1		1			
									1				1										1		1			
														T				Т				П	i i					Defects Teacher Markey
₽						2																						Default Testing Method
en			_			Ę		Ratio	Ę.																			(Use when standard left blank)
Ë			Depth from (m)	Ê	Туре	ration (hr)			Capacity	Ę																		
Sper	₽		E O	to (<u>_</u>	ara		Ę.	ű	Sodiu ESP)																		
5,	Point	Ol label ID	± ±	Depth to (m)	Sample	Prepar		sorption	Exchange	le S																		
ratory	<u>a</u>	_	e pt	Dek	San	<u>ө</u>		gs	ch	ap ag																		
Labor			۵			Sample		Ě	ă	nge Ita																		Remarks
2						Sa	٩	Sodiui (SAR)	Cation (CEC)	erce																		
							호	S S	2 2	Ä ē																		
	330-01-BH2207	330-01-BH2207-D00000	0	0.2				1	1	1																		
	330-01-BH2207	330-01-BH2207-D00050	0.5	0.5				1	1	1																		·
	330-01-BH2207	330-01-BH2207-D00100	1		DS			1	1	1																		
	330-01-BH2102	330-01-BH2102-D00000	0	0.2				1	1	1																		· · · · · · · · · · · · · · · · · · ·
	330-01-BH2102	330-01-BH2102-D00050	0.5	0.5				1	1	1																		<u> </u>
	330-01-BH2102	330-01-BH2102-D00100	1		DS			1	1	1																		
	330-01-BH2227	330-01-BH2227-D00000	0	0.2				1	1	1																		
	330-01-BH2227	330-01-BH2227-D00050	0.5	0.5				1	1	1																		
	330-01-BH2227	330-01-BH2227-D00100	1		DS			1	1	1																		
	330-01-BH2303	330-01-BH2303-D00000	0	0.2				1	1	1																		
	330-01-BH2303	330-01-BH2303-D00050	0.5	0.5				1	1	1																		
	330-01-BH2104	330-01-BH2104-D00000	0	0.2				1	1	1																		
	330-01-BH2104	330-01-BH2104-D00050	0.5	0.5				1	1	1																		
	330-01-BH2104	330-01-BH2104-D00100	1	1	DS			1	1	1																		
						1			1	1																	l	

CERTIFICATE OF ANALYSIS

Work Order : EB1823610

Client : TRILAB PTY LTD

Contact : ADMIN RESULTS

Address : 346A BILSEN RD

GEEBUNG QLD, AUSTRALIA 4031

Telephone : ----

Project : Inland Rail H2C
Order number : BNE 1909023

 C-O-C number
 : ---

 Sampler
 : ---

 Site
 : ---

 Quote number
 : EN/333

No. of samples received : 14
No. of samples analysed : 14

Page : 1 of 5

Laboratory : Environmental Division Brisbane

Contact : Customer Services EB

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61-7-3243 7222

Date Samples Received : 28-Sep-2018 11:30

Date Analysis Commenced : 03-Oct-2018

Date Analysis Commenced : 03-Oct-2018
Issue Date : 10-Oct-2018 14:30

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Brisbane Acid Sulphate Soils, Stafford, QLD Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD

Page : 2 of 5 Work Order : EB1823610

Client : TRILAB PTY LTD
Project : Inland Rail H2C

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EA006 (Sodium Adsorption Ratio) Unable to report result for Sample EB1823610-011(18091020 / 330-01-BH2303-D00050 / 0.50-0.50m) as required Calcium and Magnesium results are < LOR
- ED006(Exchangeable Cations on Alkaline Soils): Unable to calculate Magnesium/Potassium Ratio for some samples as the required results for Magnesium/Potassium are below LOR.
- ED007(Exchangeable Cations): Unable to calculate Magnesium/Potassium Ratio for some samples as the required results for Magnesium/Potassium are below LOR.
- ALS is not NATA accredited for the analysis of Exchangeable Aluminium and Exchange Acidity in soils when performed under ALS Method ED005.
- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 5
Work Order : EB1823610

Client : TRILAB PTY LTD
Project : Inland Rail H2C

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			ent sample ID	18091010 / 330-01-BH2207-D0000	18091011 / 330-01-BH2207-D0005	18091012 / 330-01-BH2207-D0010	18091013 / 330-01-BH2102-D0000	18091014 / 330-01-BH2102-D0005
				0 / 0.00-0.20m	0 / 0.50-0.50m	0 / 1.00-1.00m	0 / 0.00-0.20m	0 / 0.50-0.95m
	CI	ient sampli	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823610-001	EB1823610-002	EB1823610-003	EB1823610-004	EB1823610-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	5.8	5.9	5.7	5.9	5.9
EA006: Sodium Adsorption Ratio (SAR)								
Sodium Adsorption Ratio		0.01	-	4.45	4.74	11.0	3.28	5.52
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	9	9	30	7	14
ED005: Exchange Acidity			14 7 7					
Exchange Acidity		0.1	meq/100g	1.4	1.0	2.8	1.3	1.1
Exchangeable Aluminium		0.1	meq/100g	1.3	0.9	2.3	1.2	1.0
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g	<0.1	<0.1	<0.1	<0.1	<0.1
Exchangeable Magnesium		0.1	meq/100g	0.7	0.7	2.4	2.2	2.7
Exchangeable Potassium		0.1	meq/100g	<0.1	<0.1	0.1	0.1	0.2
Exchangeable Sodium		0.1	meq/100g	0.2	0.2	0.9	0.2	0.2
Cation Exchange Capacity		0.1	meq/100g	2.3	1.9	6.2	3.8	4.2
Exchangeable Sodium Percent		0.1	%	16.4	17.2	26.9	6.6	7.4
Calcium/Magnesium Ratio		0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Magnesium/Potassium Ratio		0.1	-			16.9	16.5	16.3

Page : 4 of 5
Work Order : EB1823610

Client : TRILAB PTY LTD
Project : Inland Rail H2C

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID Client sampling date / time		•	18091015 / 330-01-BH2102-D0010 0 / 1.00-1.00m	18091016 / 330-01-BH2227-D0000 0 / 0.00-0.20m	18091017 / 330-01-BH2227-D0005 0 / 0.50-0.50m	18091018 / 330-01-BH2227-D0010 0 / 1.00-1.00m	18091019 / 330-01-BH2303-D0000 0 / 0.00-0.20m
	Clie	ent sampli	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823610-006	EB1823610-007	EB1823610-008	EB1823610-009	EB1823610-010
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	5.8	7.0	7.9	8.5	5.8
EA006: Sodium Adsorption Ratio (SAR)								
Sodium Adsorption Ratio		0.01	-	7.44	6.11	15.5	31.2	3.23
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	23	42	193	383	4
ED005: Exchange Acidity	A NOTE OF							
Exchange Acidity		0.1	meq/100g	0.9				0.8
Exchangeable Aluminium		0.1	meq/100g	0.7				0.7
ED006: Exchangeable Cations on Alkalin	e Soils							
Exchangeable Calcium		0.2	meq/100g			10.2	8.7	
Exchangeable Magnesium		0.2	meq/100g			8.7	9.4	
Exchangeable Potassium		0.2	meq/100g			0.2	<0.2	
Exchangeable Sodium		0.2	meq/100g			3.5	4.4	
Cation Exchange Capacity		0.2	meq/100g			22.7	22.7	
Exchangeable Sodium Percent		0.2	%			15.6	19.6	
Calcium/Magnesium Ratio		0.2	-			1.2	0.9	
Magnesium/Potassium Ratio		0.2	-			39.1		
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g	0.3	11.0			<0.1
Exchangeable Magnesium		0.1	meq/100g	2.4	8.5			0.6
Exchangeable Potassium		0.1	meq/100g	0.2	0.3			<0.1
Exchangeable Sodium		0.1	meq/100g	0.2	1.5			<0.1
Cation Exchange Capacity		0.1	meq/100g	4.0	21.3			1.4
Exchangeable Sodium Percent		0.1	%	7.8	7.2			7.2
Calcium/Magnesium Ratio		0.1	-	0.1	1.3			<0.1
Magnesium/Potassium Ratio		0.1	-	14.4	31.1			

Page : 5 of 5
Work Order : EB1823610

Client : TRILAB PTY LTD
Project : Inland Rail H2C

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			18091020 / 330-01-BH2303-D0005 0 / 0.50-0.50m	18091021 / 330-01-BH2104-D0000 0 / 0.00-0.20m	18091022 / 330-01-BH2104-D0005 0 / 0.50-0.50m	18091023 / 330-01-BH2104-D0010 0 / 1.00-1.00m		
	Cli	ient sampli	ng date / time	28-Sep-2018 00:00	28-Sep-2018 00:00	28-Sep-2018 00:00	28-Sep-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1823610-011	EB1823610-012	EB1823610-013	EB1823610-014	
				Result	Result	Result	Result	
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	6.2	6.7	6.9	7.0	
EA006: Sodium Adsorption Ratio (SAR)								
Sodium Adsorption Ratio		0.01	-		3.51	3.91	4.28	
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	8	15	16	21	
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g	<0.1	9.8	9.4	8.8	
Exchangeable Magnesium		0.1	meq/100g	0.9	6.1	5.8	6.2	
Exchangeable Potassium		0.1	meq/100g	0.2	0.2	0.2	0.2	
Exchangeable Sodium		0.1	meq/100g	<0.1	0.4	0.5	0.4	
Cation Exchange Capacity		0.1	meq/100g	1.1	16.5	15.9	15.6	
Exchangeable Sodium Percent		0.1	%	7.7	2.8	3.0	2.7	
Calcium/Magnesium Ratio		0.1	-	<0.1	1.6	1.6	1.4	
Magnesium/Potassium Ratio		0.1	-	5.6	39.2	38.4	33.4	

QUALITY CONTROL REPORT

Work Order : EB1823610

Client : TRILAB PTY LTD

Contact : ADMIN RESULTS

Address : 346A BILSEN RD

GEEBUNG QLD, AUSTRALIA 4031

Telephone : ---

Project : Inland Rail H2C
Order number : BNE 1909023

C-O-C number : ---Sampler : ---Site : ----

Quote number : EN/333

No. of samples received : 14

No. of samples analysed : 14

Page : 1 of 4

Laboratory : Environmental Division Brisbane

Contact : Customer Services EB

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61-7-3243 7222
Date Samples Received : 28-Sep-2018

Date Analysis Commenced : 03-Oct-2018
Issue Date : 10-Oct-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD

 Page
 : 2 of 4

 Work Order
 : EB1823610

 Client
 : TRILAB PTY LTD

 Project
 : Inland Rail H2C

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EA002: pH 1:5 (Soils	s) (QC Lot: 1960457)											
EB1823609-001	Anonymous	EA002: pH Value		0.1	pH Unit	6.3	6.4	0.00	0% - 20%			
EB1823610-008	18091017 / 330-01-BH2227-D00050 / 0.50-0.50m	EA002: pH Value		0.1	pH Unit	7.9	8.1	2.38	0% - 20%			
EA010: Conductivity	(1:5) (QC Lot: 1960456)											
EB1823609-001	Anonymous	EA010: Electrical Conductivity @ 25°C		1	μS/cm	144	127	12.7	0% - 20%			
EB1823610-008	18091017 / 330-01-BH2227-D00050 / 0.50-0.50m	EA010: Electrical Conductivity @ 25°C		1	μS/cm	193	216	11.4	0% - 20%			
ED005: Exchange A	cidity (QC Lot: 1963746)											
EB1823610-001	18091010 / 330-01-BH2207-D00000 / 0.00-0.20m	ED005: Exchange Acidity		0.1	meq/100g	1.4	1.3	8.96	0% - 50%			
		ED005: Exchangeable Aluminium		0.1	meq/100g	1.3	1.2	12.2	0% - 50%			
ED006: Exchangeab	le Cations on Alkaline Soils	(QC Lot: 1963781)										
EB1823610-008	18091017 / 330-01-BH2227-D00050 / 0.50-0.50m	ED006: Exchangeable Calcium		0.2	meq/100g	10.2	9.5	6.99	0% - 20%			
		ED006: Exchangeable Magnesium		0.2	meq/100g	8.7	8.1	7.71	0% - 20%			
		ED006: Exchangeable Potassium		0.2	meq/100g	0.2	0.2	0.00	No Limit			
		ED006: Exchangeable Sodium		0.2	meq/100g	3.5	3.5	0.00	0% - 50%			
		ED006: Cation Exchange Capacity		0.2	meq/100g	22.7	21.3	6.16	0% - 20%			

ED007: Exchangeable Cations (QC Lot: 1963745)

 Page
 : 3 of 4

 Work Order
 : EB1823610

 Client
 : TRILAB PTY LTD

 Project
 : Inland Rail H2C

Sub-Matrix: SOIL						Laboratory D	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED007: Exchangeabl	le Cations (QC Lot: 1963745) - continued							
EB1823610-001	18091010 / 330-01-BH2207-D00000 / 0.00-0.20m	ED007: Exchangeable Calcium		0.1	meq/100g	<0.1	<0.1	0.00	No Limit
		ED007: Exchangeable Magnesium		0.1	meq/100g	0.7	0.7	0.00	No Limit
		ED007: Exchangeable Potassium		0.1	meq/100g	<0.1	<0.1	0.00	No Limit
		ED007: Exchangeable Sodium		0.1	meq/100g	0.2	0.2	0.00	No Limit
ED007: Exchangeabl	le Cations (QC Lot: 1963770)							
EB1823610-007	18091016 / 330-01-BH2227-D00000 / 0.00-0.20m	ED007: Exchangeable Calcium		0.1	meq/100g	11.0	11.4	3.47	0% - 20%
		ED007: Exchangeable Magnesium		0.1	meq/100g	8.5	8.7	2.72	0% - 20%
		ED007: Exchangeable Potassium		0.1	meq/100g	0.3	0.3	0.00	No Limit
		ED007: Exchangeable Sodium		0.1	meq/100g	1.5	1.6	0.00	0% - 50%

 Page
 : 4 of 4

 Work Order
 : EB1823610

 Client
 : TRILAB PTY LTD

 Project
 : Inland Rail H2C

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	ub-Matrix: SOIL				Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High			
EA002: pH 1:5 (Soils) (QCLot: 1960457)											
EA002: pH Value			pH Unit		4 pH Unit	100	98	102			
					7 pH Unit	100	98	102			
EA006: Sodium Adsorption Ratio (SAR) (QCLot: 1961044)											
EA006: Sodium Adsorption Ratio		0.01	-	<0.01							
EA010: Conductivity (1:5) (QCLot: 1960456)											
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	100	97	103			
ED005: Exchange Acidity (QCLot: 1963746)											
ED005: Exchange Acidity		0.1	meq/100g	<0.1							
ED005: Exchangeable Aluminium		0.1	meq/100g	<0.1							
ED006: Exchangeable Cations on Alkaline Soils (QCLot: 1	963781)										
ED006: Exchangeable Calcium		0.2	meq/100g	<0.2	5.4 meq/100g	109	70	130			
ED006: Exchangeable Magnesium		0.2	meq/100g	<0.2	4.84 meq/100g	86.3	70	130			
ED006: Exchangeable Potassium		0.2	meq/100g	<0.2	2.73 meq/100g	116	70	130			
ED006: Exchangeable Sodium		0.2	meq/100g	<0.2	2.68 meq/100g	120	70	130			
ED006: Cation Exchange Capacity		0.2	meq/100g	<0.2	15.6 meq/100g	105	70	130			
ED007: Exchangeable Cations (QCLot: 1963745)											
ED007: Exchangeable Calcium		0.1	meq/100g	<0.1	3.54 meq/100g	92.1	79	113			
ED007: Exchangeable Magnesium		0.1	meq/100g	<0.1	1.15 meq/100g	94.8	85	115			
ED007: Exchangeable Potassium		0.1	meq/100g	<0.1	0.635 meq/100g	92.9	70	122			
ED007: Exchangeable Sodium		0.1	meq/100g	<0.1	0.382 meq/100g	84.0	76	112			
ED007: Cation Exchange Capacity		0.1	meq/100g	<0.1	5.707 meq/100g	92.1	82	112			
ED007: Exchangeable Cations (QCLot: 1963770)											
ED007: Exchangeable Calcium		0.1	meq/100g	<0.1	3.54 meq/100g	95.0	79	113			
ED007: Exchangeable Magnesium		0.1	meq/100g	<0.1	1.15 meq/100g	96.6	85	115			
ED007: Exchangeable Potassium		0.1	meq/100g	<0.1	0.635 meq/100g	96.1	70	122			
ED007: Exchangeable Sodium		0.1	meq/100g	<0.1	0.382 meq/100g	87.2	76	112			
ED007: Cation Exchange Capacity		0.1	meq/100g	<0.1	5.707 meq/100g	94.6	82	112			

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EB1823610** Page : 1 of 5

Client : TRILAB PTY LTD Laboratory : Environmental Division Brisbane

 Contact
 : ADMIN RESULTS
 Telephone
 : +61-7-3243 7222

 Project
 : Inland Rail H2C
 Date Samples Received
 : 28-Sep-2018

 Site
 : --- Issue Date
 : 10-Oct-2018

Sampler : --- No. of samples received : 14
Order number : BNE 1909023 No. of samples analysed : 14

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 5

 Work Order
 : EB1823610

 Client
 : TRILAB PTY LTD

 Project
 : Inland Rail H2C

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL Evaluation: **x** = Holding time breach; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EA002: pH 1:5 (Soils) Snap Lock Bag (EA002) 05-Oct-2018 03-Oct-2018 03-Oct-2018 18091010 / 330-01-BH2207-D00000 / 0.00-0.20m, 18091011 / 330-01-BH2207-D00050 / 0.50-0.50m. 28-Sep-2018 03-Oct-2018 18091012 / 330-01-BH2207-D00100 / 1.00-1.00m, 18091013 / 330-01-BH2102-D00000 / 0.00-0.20m, 18091014 / 330-01-BH2102-D00050 / 0.50-0.95m, 18091015 / 330-01-BH2102-D00100 / 1.00-1.00m, 18091016 / 330-01-BH2227-D00000 / 0.00-0.20m, 18091017 / 330-01-BH2227-D00050 / 0.50-0.50m, 18091018 / 330-01-BH2227-D00100 / 1.00-1.00m, 18091019 / 330-01-BH2303-D00000 / 0.00-0.20m, 18091020 / 330-01-BH2303-D00050 / 0.50-0.50m, 18091021 / 330-01-BH2104-D00000 / 0.00-0.20m, 18091022 / 330-01-BH2104-D00050 / 0.50-0.50m. 18091023 / 330-01-BH2104-D00100 / 1.00-1.00m EA006: Sodium Adsorption Ratio (SAR) Snap Lock Bag (EA006) 18091011 / 330-01-BH2207-D00050 / 0.50-0.50m. 28-Sep-2018 05-Oct-2018 27-Mar-2019 05-Oct-2018 27-Mar-2019 18091010 / 330-01-BH2207-D00000 / 0.00-0.20m, 18091012 / 330-01-BH2207-D00100 / 1.00-1.00m, 18091013 / 330-01-BH2102-D00000 / 0.00-0.20m. 18091014 / 330-01-BH2102-D00050 / 0.50-0.95m. 18091015 / 330-01-BH2102-D00100 / 1.00-1.00m. 18091016 / 330-01-BH2227-D00000 / 0.00-0.20m. 18091017 / 330-01-BH2227-D00050 / 0.50-0.50m. 18091018 / 330-01-BH2227-D00100 / 1.00-1.00m. 18091019 / 330-01-BH2303-D00000 / 0.00-0.20m. 18091021 / 330-01-BH2104-D00000 / 0.00-0.20m. 18091022 / 330-01-BH2104-D00050 / 0.50-0.50m. 18091023 / 330-01-BH2104-D00100 / 1.00-1.00m EA010: Conductivity (1:5) Snap Lock Bag (EA010) 28-Sep-2018 03-Oct-2018 05-Oct-2018 03-Oct-2018 31-Oct-2018 18091010 / 330-01-BH2207-D00000 / 0.00-0.20m, 18091011 / 330-01-BH2207-D00050 / 0.50-0.50m, 18091012 / 330-01-BH2207-D00100 / 1.00-1.00m, 18091013 / 330-01-BH2102-D00000 / 0.00-0.20m, 18091014 / 330-01-BH2102-D00050 / 0.50-0.95m, 18091015 / 330-01-BH2102-D00100 / 1.00-1.00m, 18091016 / 330-01-BH2227-D00000 / 0.00-0.20m, 18091017 / 330-01-BH2227-D00050 / 0.50-0.50m, 18091018 / 330-01-BH2227-D00100 / 1.00-1.00m, 18091019 / 330-01-BH2303-D00000 / 0.00-0.20m, 18091020 / 330-01-BH2303-D00050 / 0.50-0.50m, 18091021 / 330-01-BH2104-D00000 / 0.00-0.20m, 18091022 / 330-01-BH2104-D00050 / 0.50-0.50m, 18091023 / 330-01-BH2104-D00100 / 1.00-1.00m

 Page
 : 3 of 5

 Work Order
 : EB1823610

 Client
 : TRILAB PTY LTD

 Project
 : Inland Rail H2C

 Matrix: SOIL
 Evaluation: x = Holding time breach; √ = Within holding time.

 Method
 Extraction / Preparation
 Analysis

Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED005: Exchange Acidity								
Snap Lock Bag (ED005)								
18091010 / 330-01-BH2207-D00000 / 0.00-0.20m,	18091011 / 330-01-BH2207-D00050 / 0.50-0.50m,	28-Sep-2018	05-Oct-2018	26-Oct-2018	✓	09-Oct-2018	26-Oct-2018	✓
18091012 / 330-01-BH2207-D00100 / 1.00-1.00m,	18091013 / 330-01-BH2102-D00000 / 0.00-0.20m,							
18091014 / 330-01-BH2102-D00050 / 0.50-0.95m,	18091015 / 330-01-BH2102-D00100 / 1.00-1.00m,							
18091016 / 330-01-BH2227-D00000 / 0.00-0.20m,	18091019 / 330-01-BH2303-D00000 / 0.00-0.20m,							
18091020 / 330-01-BH2303-D00050 / 0.50-0.50m,	18091021 / 330-01-BH2104-D00000 / 0.00-0.20m,							
18091022 / 330-01-BH2104-D00050 / 0.50-0.50m,	18091023 / 330-01-BH2104-D00100 / 1.00-1.00m							
Snap Lock Bag (ED005)								
18091017 / 330-01-BH2227-D00050 / 0.50-0.50m,	18091018 / 330-01-BH2227-D00100 / 1.00-1.00m	28-Sep-2018	08-Oct-2018	26-Oct-2018	✓	08-Oct-2018	26-Oct-2018	✓
ED006: Exchangeable Cations on Alkaline Soils								
Snap Lock Bag (ED006)	10001010 (000 01 BU0007 B00100 (1 00 1 00	00 0 0040	05 0-4 0040	26-Oct-2018		00.0-4.0040	26-Oct-2018	
18091017 / 330-01-BH2227-D00050 / 0.50-0.50m,	18091018 / 330-01-BH2227-D00100 / 1.00-1.00m	28-Sep-2018	05-Oct-2018	26-001-2016	✓	08-Oct-2018	20-001-2016	✓
Snap Lock Bag (ED006) 18091010 / 330-01-BH2207-D00000 / 0.00-0.20m,	18091011 / 330-01-BH2207-D00050 / 0.50-0.50m.	28-Sep-2018	08-Oct-2018	26-Oct-2018	1	08-Oct-2018	26-Oct-2018	1
18091012 / 330-01-BH2207-D00000 / 0.00-0.20III,	18091011 / 330-01-BH2102-D00000 / 0.00-0.20m,	20-0CP-2010	00-001-2010	20 000 2010		00-001-2010	20 000 2010	Y
18091014 / 330-01-BH2102-D00050 / 0.50-0.95m,	18091015 / 330-01-BH2102-D00000 / 0.00-0.2011,							
18091016 / 330-01-BH2227-D00000 / 0.00-0.20m,	18091019 / 330-01-BH2303-D00000 / 0.00-0.20m,							
· ·	18091021 / 330-01-BH2104-D00000 / 0.00-0.20m.							
18091020 / 330-01-BH2303-D00050 / 0.50-0.50m,	18091021 / 330-01-BH2104-D00000 / 0.00-0.2011,							
18091022 / 330-01-BH2104-D00050 / 0.50-0.50m,	1809 1023 / 330-01-BH2 104-D00 100 / 1.00-1.0011							
ED007: Exchangeable Cations			l					
Snap Lock Bag (ED007) 18091010 / 330-01-BH2207-D00000 / 0.00-0.20m,	18091011 / 330-01-BH2207-D00050 / 0.50-0.50m.	28-Sep-2018	05-Oct-2018	26-Oct-2018	1	09-Oct-2018	26-Oct-2018	1
18091010 / 330-01-BH2207-D00000 / 0.00-0.2011,	18091011 / 330-01-BH2102-D00000 / 0.00-0.20m.	20-0ep-2010	03-001-2010	20-000-2010	_	03-001-2010	20-001-2010	V
,	,							
18091014 / 330-01-BH2102-D00050 / 0.50-0.95m,	18091015 / 330-01-BH2102-D00100 / 1.00-1.00m,							
18091016 / 330-01-BH2227-D00000 / 0.00-0.20m,	18091019 / 330-01-BH2303-D00000 / 0.00-0.20m,							
18091020 / 330-01-BH2303-D00050 / 0.50-0.50m,	18091021 / 330-01-BH2104-D00000 / 0.00-0.20m,							
18091022 / 330-01-BH2104-D00050 / 0.50-0.50m,	18091023 / 330-01-BH2104-D00100 / 1.00-1.00m							
Snap Lock Bag (ED007) 18091017 / 330-01-BH2227-D00050 / 0.50-0.50m.	18091018 / 330-01-BH2227-D00100 / 1.00-1.00m	28-Sep-2018	08-Oct-2018	26-Oct-2018	1	08-Oct-2018	26-Oct-2018	1
ED008: Exchangeable Cations					_			<u> </u>
Snap Lock Bag (ED008)								
18091010 / 330-01-BH2207-D00000 / 0.00-0.20m,	18091011 / 330-01-BH2207-D00050 / 0.50-0.50m,	28-Sep-2018	05-Oct-2018	26-Oct-2018	1	09-Oct-2018	26-Oct-2018	✓
18091012 / 330-01-BH2207-D00100 / 1.00-1.00m,	18091013 / 330-01-BH2102-D00000 / 0.00-0.20m,							
18091014 / 330-01-BH2102-D00050 / 0.50-0.95m,	18091015 / 330-01-BH2102-D00100 / 1.00-1.00m,							
18091016 / 330-01-BH2227-D00000 / 0.00-0.20m,	18091019 / 330-01-BH2303-D00000 / 0.00-0.20m,							
18091020 / 330-01-BH2303-D00050 / 0.50-0.50m.	18091021 / 330-01-BH2104-D00000 / 0.00-0.20m.							
18091022 / 330-01-BH2104-D00050 / 0.50-0.50m,	18091023 / 330-01-BH2104-D00100 / 1.00-1.00m							
Snap Lock Bag (ED008)								
18091017 / 330-01-BH2227-D00050 / 0.50-0.50m,	18091018 / 330-01-BH2227-D00100 / 1.00-1.00m	28-Sep-2018	08-Oct-2018	26-Oct-2018	✓	08-Oct-2018	26-Oct-2018	✓

Page : 4 of 5 Work Order EB1823610 Client TRILAB PTY LTD Inland Rail H2C Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification									
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification				
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation					
Laboratory Duplicates (DUP)											
Electrical Conductivity (1:5)	EA010	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Exchange Acidity by 1M Potassium Chloride	ED005	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Exchangeable Cations	ED007	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Exchangeable Cations on Alkaline Soils	ED006	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
pH (1:5)	EA002	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Laboratory Control Samples (LCS)											
Electrical Conductivity (1:5)	EA010	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Exchangeable Cations	ED007	2	12	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Exchangeable Cations on Alkaline Soils	ED006	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
pH (1:5)	EA002	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Method Blanks (MB)											
Electrical Conductivity (1:5)	EA010	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Exchange Acidity by 1M Potassium Chloride	ED005	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Exchangeable Cations	ED007	2	12	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Exchangeable Cations on Alkaline Soils	ED006	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Sodium Adsorption Ratio (SAR)	EA006	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard				

 Page
 : 5 of 5

 Work Order
 : EB1823610

 Client
 : TRILAB PTY LTD

 Project
 : Inland Rail H2C

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	In house: Referenced to Rayment and Lyons 4A1 and APHA 4500H+. pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Sodium Adsorption Ratio (SAR)	EA006	SOIL	In house: Referenced to USEPA 600/2 - 78 - 54. The concentration as meq of Ca, Mg and Na are determined on saturated soil by water leach. Results are used to calculate SAR.
Electrical Conductivity (1:5)	EA010	SOIL	In house: Referenced to Rayment and Lyons 3A1 and APHA 2510. Conductivity is determined on soil samples using a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Exchange Acidity by 1M Potassium Chloride	ED005	SOIL	In house: referenced to Rayment and Lyons, (2011), method 15G1. This method is unsuitable for near neutral and alkaline soils. NATA accreditation does not cover performance of this service.
Exchangeable Cations on Alkaline Soils	ED006	SOIL	In house: Referenced to Soil Survey Test Method C5. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with alcoholic ammonium chloride at pH 8.5. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil.
Exchangeable Cations	ED007	SOIL	In house: Referenced to Rayment & Lyons (2011) Method 15A1. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Exchangeable Cations with pre-treatment	ED008	SOIL	In house: Referenced to Rayment & Higginson (2011) Method 15A2. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Preparation Methods	Method	Matrix	Method Descriptions
SAR Prep	EA006PR	SOIL	In house: Referenced to USEPA 600/2. Soil is bought to saturation with distilled water by capiliary action.
Exchangeable Cations Preparation Method (Alkaline Soils)	ED006PR	SOIL	In house: Referenced to Rayment and Lyons 2011 method 15C1.
Exchangeable Cations Preparation Method	ED007PR	SOIL	In house: Referenced to Rayment & Higginson (1992) method 15A1. A 1M NH4Cl extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

CHAIN OF CUSTODY

ALS Laboratory: please tick →

CLIENT: Golder Associates Phy Ltd

DADELAIDE 3/1 Burma Road Pooraka SA 5095 Ph: 08 8162 5130 E. adelaide@alsglobal.com

CBRISBANE 2 Byth Street Stafford CLD 4053 Ph: 07 3243 7222 E; semples, brisbane@alsiglobat.com CBLADSTONE 48 Callemondah Drive Gladstone QLD 4680 Ph: 07 4978 7944 E; gladstone@alsiglobat.com

TURNAROUND REQUIREMENTS:

UMACKAY 78 Harbour Road Mackay QLD 4740 Ph; 07 4944 0177 E; mackay@alsglobal.com

☐MELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 8549 9600 E; samples.melbourne@alsglobal.com

Standard TAT (List due date):

DMUDGEE 1/29 Sydney Road Mudgee NSW 2850 Ph: 02 6372 6735 E; mudgee.mail@aisglobal.com DNEWCASTLE 5/586 Mailland Road Mayfield Wesl NSW 2304 Prv 02 4014 2500 E: samples.newcastle@alsglobal.com DNOWRA 4/13 Geary Place North Nowra NSW 2541 Prv 02 4423 2063 E: nowra@alsglobal.com

PERTH 10 Hod Way Malaga WA 6090
Ph: 08 9209 7655 E: samples.perth@alsglobal.com

1281

QSYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph: 02 8784 8555 E: samples sydney@alsglobal.com QTOWNSVILLE 14-15 Desma Court Bohle QLD 4818 Ph: 07 4786 0600 E: townsville environmental@alsglobal.com

FOR LABORATORY USE ONLY (Circle)

©WOLLONGONG 1/19-21 Raiph Black Drive, Nth Wollongong NSW 2500 Ph; 02 4225 3125 E: wollongong@atsglobal.com

POLECT: Tolder	- Brisbane	~	e.g., Ultra To	AT may be longer for some tests race Organics)	☐ Non Si	tandard or ur	gent TAT (Lis	t due date):					dy Seal Intact?		Yes No N/A
RDER NUMBER:		PROJECT NO.: (893802			····				COC SEQUE	ENCE NUMBE	R (Circle)	Free i	ce / frozen ice brick t?	s present u	pon Yes No N/A
		SE ORDER NO.:		Y OF ORIGIN:				COC:	1 2	3 4	5 6	7 Rando	om Sample Temper	rature on Re	ecelpt: 'C
MPLER: D. I	Mitch McGinnis			9 4 4 9 4 4 4	DEL BIOLIS	WED DV		OF:	1 2	3 4	5 6		comment:	· · · · · · · · · · · · · · · · · · ·	
MPLER: Rob DC Emailed to ALS?	LAPPET .	EDD FORMA	Tiordofo	3448611113	RELINQUIS	SHED BY:		REC	YED BY	-	1	RELINQUI	SHED BY:		RECEIVED BY:
	default to PM if no other addresses are				DATE/TIME	÷.		DATE	WW.			DATE/TIME	= .		DATE/TIME:
nail Invoice to (will de	efault to PM if no other addresses are li	isted):	<u> </u>	AUG. COMPIN				2	Hinli	8 9 .	17.	DATE TIME	- -		DATE TIME.
DMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	AL:			1				11011	• ,	. ,				
ALS USE ONLY		E DETAILS olid(S) Water(W)		CONTAINER INF	ORMATION								sted to attract suite		Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	, TYPE & PRESERVA` (refer to codes belo		TOTAL BOTTLES	Co, Mg, Ka, Ct, F Sq, Alkalinin, Hardy	EC, PH, TDS	Total 101550 Wel As, B, Ba, Re, Cd, Cr Co, Cu, Cd, Mn, Fe	Vi, Pb, 2c, V, 2n 45	Vutriers Vitrate, Nitrite Armonia	Reactive Mashbars Total PAN, TKN	Sodiun Adsorphica Rehic	di	iomments on likely contaminant levets, flutions, or samples requiring specific QC nalysis etc.
1	330-01-BA2212	22/10/18 15:20	W	N, SP	····	4	V	V	7		<u> </u>	X (C			
7	330-01-BH2212 330-01-BH2216 GW 78-9 330-01-BH22H	28/10/10 12/10	10/	N, SP			V			V			v		
3	Cal 78-0	27/10/18 17.40	1.7		~_·_·	4	V			0					
	92- 01 Dugger	23/10/18 13:50	W	N, SP		4		V		L		س	-		
	3 30-21-13112211														
<u> </u>	330-01-BH 2104	23/10/18 16:00	W	N, SP		4	V	V	سن	e e	~	<u>ارا</u>			
· · · · · · · · · · · · · · · · · · ·		' '					-								
	\(\text{}\)								JR	GE	N			a	Environmental Division Brisbane Work Order Reference EB1825628
						1								_	
	-			·	TOTAL	16	1							_	

Telephone: + 61-7-3243 7222

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic

Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; L = Lugois Iodine Preserved Bottles; STT = Sterile Soiline; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; L = Lugois Iodine Preserved Bottles; STT = Sterile Soiline; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; L = Lugois Iodine Preserved Bottles; STT = Sterile Soiline; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; L = Lugois Iodine Preserved Bottles; STT = Sterile Soiline; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; L = Lugois Iodine Preserved Bottles; STT = Sterile Soiline; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; L = Lugois Iodine Preserved Bottles; STT = Sterile Soiline; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; L = Lugois Iodine Preserved Bottles; STT = Sterile Soiline; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; L = Lugois Iodine Preserved Bag; L = Lug

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F

A
(AI E)

CHAIN OF CUSTODY

ALS Laboratory: please tick ->

DADELAIDE 3/1 Burma Road Pooraka SA 5095 Ph: 08 8162 5130 E: adelaide@alsolohal.com

DBRISBANE 2 Byth Street Stafford OLD 4053 Ph: 07 3243 7222 E; samples brisbane@alsolobal.com

DGLADSTONE 48 Callemondah firiya Gladstone Ol D 4680

LIMACKAY 78 Harbour Road Mackay OLD 4740 Ph: 07 4944 0177 E: mackay@alsglobal.com UMELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 8549 9600 E: samples mellourne@alsolobal.com

CIMUDGEE 1/29 Sydney Road Mudgee NSW 2850

DNEWCASTLE 5/585 Maitland Road Mayfield West NSW 2304 Ph; 92 4014 2500 E; samples.newcastle@alsolobal.com

UNOWRA 4/13 Geary Place North Nowra NSW 2541 Ph: 02 4423 7063 F: nowra@alsglobal.com

FIREPTH 10 Had May Malana WA 6000

USYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph; 02 8784 8555 E; samples.sydney@alsglobal.com DTOWNSVILLE 14-15 Desma Court Bohle OLD 4818

Environmental Division
Brisbane
Work Order Reference
EB1825910

500

N/A

Telephone · + 61-7-3243 7222

	Ph: 07 4978 7944 E: gladstone		EE 1729 Sydney Road Mudgee NSW 2850 372 6735 E: mudgee.mail@alsglobal.com					laga WA les.perth(bal.com		
office: Golder Associates Pty L Office: Golder-Brisbane		TURNAROUND REQUIREMENTS: (Standard TAT may be longer for some tests e.g., Ultra Trace Organics)	☐ Standard TAT (List due date): ☐ Non Standard or urgent TAT (Lis	t due date)	: 4	4	81	NY:	5			FOR L
PROJECT: Inland Rail (P13	PROJECT NO./893802	ALS QUOTE NO.:			coc	SEQU	IENCE	NUMBI	ER (C	Circle)		Free ice i receipt?
	URCHASE ORDER NO.:	COUNTRY OF ORIGIN:		COC:	1	2	3	4	5	6	7	Random
PROJECT MANAGER: Mitch McGinni	1111 111111	OF:	1	2	3	4	5	6	7	Other co		
SAMPLER: Rob Cupper		IOBILE: 04486/11/3	RELINQUISHED BY:	REC	FMFF	<i>B</i> 1/7	1,				REL	INQUISH
COC Emailed to ALS? (YES / NO) EDD FORMAT (or default):			7		11 P		<i>t</i> 7					
Email Reports to (will default to PM if no other addresses are listed): S Kumarapel & Golder. com au		DATE/TIME:	DATE	E/TIME	<i>v U</i> ≣:.	•	_			DAT	Е/ТІМЕ:	
Email Invoice to (will default to PM if no other addresses are listed):			†	Ql	Slic	201	8	93	25	•		
COMMENTS/SDECIAL HANDI INC/STODAGE OF	Diabook				- 1 .							

· · · · · · · · · · · · · · · · · · ·														
ALS USE ONLY		E DETAILS lid(S) Water(W)		CONTAINER INFORMATION	I	2						ted to attract suite		Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Anions/Cations Ca, Mg, Na, Cl, F So, Alkalinity, Hond	, PH,	Tota 1 Dissolved As, B, Ben, Be, Col.C. Co.Cu, Mn, Fe, Ni	Pb, Se, V, 2m, H5	Nutrients Nitrates, Nitrite Ammonia	Reactive Phosphor Total PSN, TKN	2		Comments on likely contaminant levels, dilutions, or samples requiring specific GC analysis etc.
	330-01-8A 2102	24/10/18 12:00	W	N, SP	4	2	V	~		-	س	V		
	330-01- BH 2303	25/10/18 7:30	W	N. SP	4	v	V	2	1	V				
	330-01-BH 2303 330-01-BH 2207	25/10/18 9:45	W	NSP	4	v	v	v	C	J	- L			
					1									
		·												
			}											
•											·		<i>y</i> v	⊕ 4883
				тота	12									

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Pre V = VOA Vial HCI Preserved, VB = VOA Vial Sodium Bisulphate Preserved, VB = VOA Vial Sodium Bisulphate Preserved Plastic; F = Formalderlyde Preserved Glass; H = HCI preserved Plastic; HS = HCI prese Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; LI = Lugols Iodine Preserved Bottles; STT = Sterile Sodium Thiosulfate Preserved Bottles.

APPENDIX

EMR Search Certificates and Laboratory Certificates

Appendix V3 Surface water quality results—Round 1 (October 2017)

HELIDON TO CALVERT ENVIRONMENTAL IMPACT STATEMENT

☐ Eurofins | mgt Sydney Lab

Unit F3 Building F 16 Mars Road, Lane Cove West, NSW 2056 P : +61 Z 9903 8400 E 'EnviroSampleNSW@eurolins.com.ou

Eurofins | mgt Brisbane Lab

Unit 1, 21 Smallwood Place, Muramie, QLD 4172 P. +61 7 3902 4800 E. EnviroSampleQLD@eutrolins.com.se.

| Eurofins | mgt | 2 Kingston Town Close, Oakleigh, VIC 3166 | P.: +613 8564 5000 | F.: +613 8564 5000 | E.: En/viroSample/Yic@ourofins.com.au

Special Direction ** 2 estates in total significance and secure productions of the production of the p	oring
Contact Name Leesa Leathbridge Contact Prince Ne O7 3173 8730 Special Direction ** 2 e-Scress in International Special Direction ** 3 to special Direction ** 4 e-Scress in International Special Direction ** 4 e-Scress in International Special Direction ** 4 e-Scress in International Special Direction ** 5 to special Direction ** 5 to special Direction ** 6 to special Direction ** 5 to special Direction ** 6 to special Direction ** 7 to special Direction ** 8 to special Direction ** 1 to special Direct	
1 HQC 11A .09/10/17 W V V V V V V V V V V V V V V V V V V	oup.com
1 HQC 11A .09/10/17 W V V V V V V V V V V V V V V V V V V	☐ 3 DAY*
1 HQC 11A .09/10/17 W V V V V V V V V V V V V V V V V V V	* Surcharges apply
1 HQC 11A .09/10/17 W V V V V V V V V V V V V V V V V V V	hipment
1 HQC 11A .09/10/17 W V V V V V V V V V V V V V V V V V V)
1 HQC 11A .09/10/17 W V V V V V V V V V V V V V V V V V V	
2 HQC 4A 9/6/17W ///////////////////////////////////	G Hazard Warning
2 Hac 4A 09/10/17W / / / / / / / / / / / / / / / / / / /	
3 H2 C D 1 181 1 W 1 / 1 V / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	
3 HZC 12A 10/17 W V V V V V V V V V V V V V V V V V V	
1. Hac 9A 11/10/17 W / / / / / / / / / / / / / / / / / /	
5. H2C 7A W/0/17 W / / / / / / / / / / / / / / / / / /	
6. H2C 3A 12/10/17 W / / / / / / / / / / / / / / / 21	
1. H2C 10A 1111011 W / / / / / / / / / / / / / / / 21	
" Hac Dup 1 - W / / / / / / / / / / / / / / / / / /	
9 H2C DVD 2 - W//////////////////////////////////	
10. H2C Trip1 - W///////////////////////////////////	
"H2C 17A 13/19/17 W S S S S S S S S S S S S S S S S S S	
12 H2C 18A 13/10/17 W V V V V V V V V V V V V V V V V V V	
Laboratory Use Only Received By Received By Received By Received By Received By SYD BNE MEL PER ADL NEW DAR Date 13/10/17 Time 3:01 PM Signature 15/10/17 Time 15/10/18 Signature 15/10/18 Sign	8-27

15.9. 14.6. 14.60c

LN NOTES POST CODE

MASS

Kystel byant 13/10/17 3:01 PM. 18.8 19.8 18.2 18.27

Aurecon Australia (BRIS) Pty Ltd Level 14, 32 Turbot St Brisbane QLD 4001

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: LEESA LEATHBRIDGE

Report 567573-W

Project name BASELINE SURFACE WATER MONITORING

Project ID INLAND RAIL
Received Date Oct 13, 2017

Client Sample ID			H2C 11A	H2C 4A	H2C 12A	H2C 9A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B17-Oc14979	B17-Oc14980	B17-Oc14981	B17-Oc14982
Date Sampled			Oct 09, 2017	Oct 09, 2017	Oct 10, 2017	Oct 11, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	1					
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	62	79	147	95
p-Terphenyl-d14 (surr.)	1	%	70	85	140	99
Ammonia (as N)	0.01	mg/L	0.11	0.13	< 0.01	< 0.01
Chlorophyll a	5	ug/L	< 10	< 10	87	< 10
Conductivity (at 25°C)	1	uS/cm	1400	510	970	2200
Dissolved Oxygen	0.01	mg/L	9.3	8.6	8.6	7.3
Dissolved Oxygen (% Saturation)		%	110	95	96	81
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	0.47	< 0.05	< 0.05
Nitrate (as N)	0.02	mg/L	< 0.02	0.43	< 0.02	0.03
Nitrite (as N)	0.02	mg/L	< 0.02	0.04	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	0.49	<0.2	0.4	0.2
рН	0.1	pH Units	9.3	8.1	8.4	8.2
Phosphate total (as P)	0.05	mg/L	0.10	0.10	0.10	0.15
Phosphorus reactive (as P)	0.05	mg/L	< 0.05	0.10	< 0.05	< 0.05
Salinity (determined from EC)*	20	mg/L	700	250	480	1100
Suspended Solids	1	mg/L	47	< 1	19	11
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.6	0.2	0.4	0.2

Client Sample ID Sample Matrix Eurofins mgt Sample No.			H2C 11A Water B17-Oc14979	H2C 4A Water B17-Oc14980	H2C 12A Water B17-Oc14981	H2C 9A Water B17-Oc14982
Date Sampled			Oct 09, 2017	Oct 09, 2017	Oct 10, 2017	Oct 11, 2017
Test/Reference	LOR	Unit				
Total Nitrogen (as N)	0.2	mg/L	0.6	0.7	0.4	0.2
Turbidity	1	NTU	36	2.3	9.6	4.8
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.002	< 0.001	< 0.001	0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.001	0.002	0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.003	0.002	0.005	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	0.011	< 0.005	< 0.005

Client Sample ID			H2C 7A	H2C 3A	H2C 10A	H2C DUP1
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B17-Oc14983	B17-Oc14984	B17-Oc14985	B17-Oc14986
Date Sampled			Oct 11, 2017	Oct 11, 2017	Oct 11, 2017	Oct 11, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	69	143	74	103
p-Terphenyl-d14 (surr.)	1	%	81	140	80	81
Ammonia (as N)	0.01	mg/L	0.13	0.03	< 0.01	0.13
Chlorophyll a	5	ug/L	< 10	< 10	< 5	< 5
Conductivity (at 25°C)	1	uS/cm	740	870	3800	510
Dissolved Oxygen	0.01	mg/L	8.1	8.7	8.3	8.6
Dissolved Oxygen (% Saturation)		%	90	97	92	96
Nitrate & Nitrite (as N)	0.05	mg/L	0.20	< 0.05	< 0.05	0.45
Nitrate (as N)	0.02	mg/L	0.19	< 0.02	0.05	0.41
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	0.04
Organic Nitrogen (as N)	0.2	mg/L	0.5	0.3	0.4	0.27
Hq.	0.1	pH Units	8.1	8.3	8.4	8.1

Client Sample ID Sample Matrix			H2C 7A Water	H2C 3A Water	H2C 10A Water	H2C DUP1 Water
Eurofins mgt Sample No.			B17-Oc14983	B17-Oc14984	B17-Oc14985	B17-Oc14986
Date Sampled			Oct 11, 2017	Oct 11, 2017	Oct 11, 2017	Oct 11, 2017
Test/Reference	LOR	Unit				
Phosphate total (as P)	0.05	mg/L	0.13	< 0.05	0.06	0.11
Phosphorus reactive (as P)	0.05	mg/L	0.11	< 0.05	< 0.05	0.10
Salinity (determined from EC)*	20	mg/L	360	430	2000	250
Suspended Solids	1	mg/L	4.4	1.6	7.2	< 1
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.6	0.3	0.4	0.4
Total Nitrogen (as N)	0.2	mg/L	0.8	0.3	0.4	0.85
Turbidity	1	NTU	1.7	< 1	3.3	1.8
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.003	0.002	0.002	0.002
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	0.009

Client Sample ID			H2C DUP2	H2C TRIP 1	H2C 17A	H2C 18A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B17-Oc14987	B17-Oc14988	B17-Oc14989	B17-Oc14990
Date Sampled			Oct 11, 2017	Oct 11, 2017	Oct 11, 2017	Oct 11, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	145	int	int	int
p-Terphenyl-d14 (surr.)	1	%	146	69	84	58
Ammonia (as N)	0.01	mg/L	0.01	0.01	0.02	0.02
Chlorophyll a	5	ug/L	< 10	< 10	< 10	< 5
Conductivity (at 25°C)	1	uS/cm	2200	1900	850	2300
Dissolved Oxygen	0.01	mg/L	7.4	7.4	8.0	8.0
Dissolved Oxygen (% Saturation)		%	83	83	89	89

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			H2C DUP2 Water B17-Oc14987 Oct 11, 2017	H2C TRIP 1 Water B17-Oc14988 Oct 11, 2017	H2C 17A Water B17-Oc14989 Oct 11, 2017	H2C 18A Water B17-Oc14990 Oct 11, 2017
Test/Reference	LOR	Unit				
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Nitrate (as N)	0.02	mg/L	0.03	0.04	0.03	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	0.4	0.3	0.3	0.6
рН	0.1	pH Units	8.2	8.3	8.2	8.1
Phosphate total (as P)	0.05	mg/L	0.17	0.17	0.27	0.05
Phosphorus reactive (as P)	0.05	mg/L	< 0.05	< 0.05	0.21	< 0.05
Salinity (determined from EC)*	20	mg/L	1100	960	420	1200
Suspended Solids	1	mg/L	7.0	10	7.0	2.5
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.4	0.3	0.3	0.6
Total Nitrogen (as N)	0.2	mg/L	0.4	0.3	0.3	0.6
Turbidity	1	NTU	4.7	2.9	2.1	2.6
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.001	0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	0.002	0.002
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 17, 2017	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Water by GCMS			
Chlorophyll a	Melbourne	Oct 16, 2017	2 Day
- Method: APHA Method 10200H			
Conductivity (at 25°C)	Melbourne	Oct 16, 2017	28 Day
- Method: LTM-INO-4030			
Dissolved Oxygen	Melbourne	Oct 16, 2017	1 Day
- Method: LTM-INO-4130 Determination of Dissolved Oxygen using a DO meter			
Dissolved Oxygen (% Saturation)	Melbourne	Oct 16, 2017	1 Day
- Method: LTM-INO-4130 Determination of Dissolved Oxygen using a DO meter			
pH	Melbourne	Oct 16, 2017	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Phosphate total (as P)	Melbourne	Oct 16, 2017	28 Day
- Method: APHA 4500-P E. Phosphorous			
Phosphorus reactive (as P)	Melbourne	Oct 16, 2017	2 Day
- Method: APHA4500-PO4			
Salinity (determined from EC)*	Melbourne	Oct 16, 2017	0 Day
Suspended Solids	Melbourne	Oct 16, 2017	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Melbourne	Oct 16, 2017	2 Day
- Method: LTM-INO-4140 Turbidity by Nephelometric Method			
Metals M8 filtered	Melbourne	Oct 16, 2017	28 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Nitrogens (speciated)			
Ammonia (as N)	Melbourne	Oct 16, 2017	28 Day
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Nitrate & Nitrite (as N)	Melbourne	Oct 16, 2017	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA			
Nitrate (as N)	Melbourne	Oct 16, 2017	7 Day
- Method: APHA 4500-NO3 Nitrate Nitrogen by FIA			
Nitrite (as N)	Melbourne	Oct 16, 2017	2 Day
- Method: APHA 4500-NO2 Nitrite Nitrogen by FIA			
Organic Nitrogen (as N)	Melbourne	Oct 13, 2017	7 Day
- Method: APHA 4500 Organic Nitrogen (N)			
Total Kjeldahl Nitrogen (as N)	Melbourne	Oct 16, 2017	7 Day
- Method: APHA 4500 TKN			

Order No.:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Page 6 of 13

Company Name: Aurecon Australia (BRIS) Pty Ltd

Address: Level 14, 32 Turbot St

> Brisbane QLD 4001

Project Name: BASELINE SURFACE WATER MONITORING

Project ID: **INLAND RAIL**

500569 Oct 13, 2017 3:00 PM Report #: 567573 Due: Oct 20, 2017

Phone: 07 3173 8000 **Priority:** 5 Day

LEESA LEATHBRIDGE Fax: +61 7 3173 8001 **Contact Name:**

Eurofins | mgt Analytical Services Manager : Ryan Gilbert

		Sa	mple Detail			Chlorophyll a	Conductivity (at 25°C)	Dissolved Oxygen	Dissolved Oxygen (% Saturation)	PH	Phosphate total (as P)	Phosphorus reactive (as P)	Salinity (determined from EC)*	Suspended Solids	Turbidity	Polycyclic Aromatic Hydrocarbons	Metals M8 filtered	Nitrogens (speciated)
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	ney Laboratory																	
	bane Laborator																	
	h Laboratory - N		<u>'36</u>															
	rnal Laboratory	1			T													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	H2C 11A	Oct 09, 2017		Water	B17-Oc14979	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2	H2C 4A	Oct 09, 2017		Water	B17-Oc14980	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
3	H2C 12A	Oct 10, 2017		Water	B17-Oc14981	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
4	H2C 9A	Oct 11, 2017		Water	B17-Oc14982	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
5	H2C 7A	Oct 11, 2017		Water	B17-Oc14983	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
6	H2C 3A	Oct 11, 2017		Water	B17-Oc14984	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
7	H2C 10A	Oct 11, 2017		Water	B17-Oc14985	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
8	H2C DUP1	Oct 11, 2017		Water	B17-Oc14986	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
9	H2C DUP2	Oct 11, 2017		Water	B17-Oc14987	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	X

Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172

ABN: 50 005 085 521 Telephone: +61 7 3902 4600 Report Number: 567573-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

07 3173 8000

+61 7 3173 8001

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Aurecon Australia (BRIS) Pty Ltd

Address: Level 14, 32 Turbot St

Brisbane QLD 4001

BASELINE SURFACE WATER MONITORING

Project ID: INLAND RAIL

Sydney Laboratory - NATA Site # 18217

Brisbane Laboratory - NATA Site # 20794

Perth Laboratory - NATA Site # 23736

Oct 11, 2017

Oct 11, 2017

Oct 11, 2017

Water

Water

Water

B17-Oc14988

B17-Oc14989

B17-Oc14990

X X

X X

X X

12 12

Х

Х

X X

12

Χ

Χ

12

X X

 $x \mid x \mid x \mid x \mid x$

 $X \mid X \mid X$

12 | 12 | 12 | 12

 $X \mid X \mid X$

 $x \mid x \mid x$

 $x \mid x$

Χ

12

X X

12 12

Χ

Χ

Χ

Χ

Χ

12

Χ

H2C TRIP 1

H2C 17A

H2C 18A

Test Counts

11

12

Project Name:

500569 **Received:** Oct 13, 2017 3:00 PM 567573 **Due:** Oct 20, 2017

Priority: 5 Day

Contact Name: LEESA LEATHBRIDGE

												Eur	ofins	mgt Analytical Services Manager : Ryan Gilbert
Sample Detail	Chlorophyll a	Conductivity (at 25°C)	Dissolved Oxygen	Dissolved Oxygen (% Saturation)	рН	Phosphate total (as P)	Phosphorus reactive (as P)	Salinity (determined from EC)*	Suspended Solids	Turbidity	Polycyclic Aromatic Hydrocarbons	Metals M8 filtered	Nitrogens (speciated)	
Melbourne Laboratory - NATA Site # 1254 & 14271	Х	Χ	Χ	Χ	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	

Order No.:

Report #:

Phone:

Fax:

Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172
ABN: 50 005 085 521 Telephone: +61 7 3902 4600

Report Number: 567573-W

Page 7 of 13

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - SurrogateThe addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

 Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172
 Page 8 of 13

 ABN : 50 005 085 521 Telephone: +61 7 3902 4600
 Report Number: 567573-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	IIIg/L	1 4 0.001	0.001	1 433	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Chlorophyll a		< 5	5	Pass	
Dissolved Oxygen (% Saturation)	ug/L %	100		N/A	
· · · · · · · · · · · · · · · · · ·		< 0.05	0.05	Pass	
Nitrate & Nitrite (as N)	mg/L				
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	
Phosphate total (as P)	mg/L	< 0.05	0.05	Pass	
Phosphorus reactive (as P)	mg/L	< 0.05	0.05	Pass	
Suspended Solids	mg/L	< 1	1	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Turbidity	NTU	< 1		Pass	
Method Blank		T T		ı	
Heavy Metals	<u> </u>				
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	108	70-130	Pass	
Acenaphthylene	%	117	70-130	Pass	
Anthracene	%	109	70-130	Pass	
Benz(a)anthracene	%	112	70-130	Pass	
Benzo(a)pyrene	%	121	70-130	Pass	
Benzo(b&j)fluoranthene	%	126	70-130	Pass	
Benzo(g.h.i)perylene	%	108	70-130	Pass	
Benzo(k)fluoranthene	%	119	70-130	Pass	
Chrysene	%	124	70-130	Pass	
Dibenz(a.h)anthracene	%	104	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Fluoranthene			%	127	70-130	Pass	
Fluorene			%	126	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	109	70-130	Pass	
Naphthalene			%	100	70-130	Pass	
Phenanthrene			%	125	70-130	Pass	
Pyrene			%	126	70-130	Pass	
LCS - % Recovery							
Ammonia (as N)			%	91	70-130	Pass	
Nitrate & Nitrite (as N)			%	92	70-130	Pass	
Nitrate (as N)			%	92	70-130	Pass	
Nitrite (as N)			%	95	70-130	Pass	
Phosphate total (as P)			%	82	70-130	Pass	
Phosphorus reactive (as P)			%	114	70-130	Pass	
Suspended Solids			%	104	70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	106	70-130	Pass	
LCS - % Recovery					 		
Heavy Metals							
Arsenic (filtered)			%	110	80-120	Pass	
Cadmium (filtered)			%	110	80-120	Pass	
Chromium (filtered)			%	105	80-120	Pass	
Copper (filtered)			%	108	80-120	Pass	
Lead (filtered)			%	103	80-120	Pass	
Mercury (filtered)			%	95	70-130	Pass	
Nickel (filtered)			%	108	80-120	Pass	
Zinc (filtered)			%	112	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
				Result 1			
Ammonia (as N)	M17-Oc15002	NCP	%	83	70-130	Pass	
Nitrate & Nitrite (as N)							
· iti die di · iti ite (de · i)	M17-Oc15002	NCP	%	90	70-130	Pass	
Nitrate (as N)	M17-Oc15002 M17-Oc15002	NCP NCP	% %	90 90	70-130 70-130	Pass Pass	
, ,				t	1		
Nitrate (as N)	M17-Oc15002	NCP	%	90	70-130	Pass	
Nitrate (as N) Nitrite (as N)	M17-Oc15002 M17-Oc15002	NCP NCP	% %	90 93	70-130 70-130	Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P)	M17-Oc15002 M17-Oc15002 M17-Oc14879	NCP NCP NCP	% % %	90 93 81	70-130 70-130 70-130	Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N)	M17-Oc15002 M17-Oc15002 M17-Oc14879	NCP NCP NCP	% % %	90 93 81	70-130 70-130 70-130	Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N)	M17-Oc15002 M17-Oc15002 M17-Oc14879	NCP NCP NCP	% % %	90 93 81 71	70-130 70-130 70-130	Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052	NCP NCP NCP	% % % %	90 93 81 71 Result 1	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P)	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982	NCP NCP NCP	% % % %	90 93 81 71 Result 1	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982	NCP NCP NCP	% % % %	90 93 81 71 Result 1 108	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbor	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982	NCP NCP NCP NCP	% % % %	90 93 81 71 Result 1 108	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbot Acenaphthene	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982	NCP NCP NCP NCP	% % % %	90 93 81 71 Result 1 108 Result 1 76	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbot Acenaphthene Acenaphthylene	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982 B17-Oc14985 B17-Oc14985	NCP NCP NCP NCP	% % % % %	90 93 81 71 Result 1 108 Result 1 76 85	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbot Acenaphthene Acenaphthylene Anthracene	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982 B17-Oc14985 B17-Oc14985 B17-Oc14985	NCP NCP NCP NCP	% % % % %	90 93 81 71 Result 1 108 Result 1 76 85 79	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985	NCP NCP NCP CP CP CP CP CP	% % % % % % %	90 93 81 71 Result 1 108 Result 1 76 85 79 72	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbot Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985	NCP NCP NCP CP CP CP CP CP CP	% % % % % % % % %	90 93 81 71 Result 1 108 Result 1 76 85 79 72 88	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985	NCP NCP NCP CP CP CP CP CP CP CP CP	% % % % % % % % %	90 93 81 71 Result 1 108 Result 1 76 85 79 72 88 89	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 M17-Oc14982 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985 B17-Oc14985	NCP NCP NCP CP	% % % % % % % % % % % % % % % % % %	90 93 81 71 Result 1 108 Result 1 76 85 79 72 88 89 72	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbot Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(k)fluoranthene	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982 B17-Oc14985	NCP NCP NCP CP C	% % % % % % % % % % % % % % % % % %	90 93 81 71 Result 1 108 Result 1 76 85 79 72 88 89 72 70	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbot Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc14879 M17-Oc07052 B17-Oc14982 B17-Oc14985	CP C	% % % % % % % % % % % % % % % % % % %	90 93 81 71 Result 1 108 Result 1 76 85 79 72 88 89 72 70 75	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbot Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	M17-Oc15002 M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982 B17-Oc14985	NCP NCP NCP NCP CP C	% % % % % % % % % % % % % % % % % % %	90 93 81 71 Result 1 108 Result 1 76 85 79 72 88 89 72 70 75 72	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	M17-Oc15002 M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982 B17-Oc14985	NCP NCP NCP NCP CP C	% % % % % % % % % % % % % % % % % % %	90 93 81 71 Result 1 108 Result 1 76 85 79 72 88 89 72 70 75 72 77	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate (as N) Nitrite (as N) Phosphate total (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Phosphorus reactive (as P) Spike - % Recovery Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluorene	M17-Oc15002 M17-Oc15002 M17-Oc15002 M17-Oc14879 M17-Oc07052 B17-Oc14982 B17-Oc14985	NCP NCP NCP NCP CP C	% % % % % % % % % % % % % % % % % % %	90 93 81 71 Result 1 108 Result 1 76 85 79 72 88 89 72 70 75 72 77 87	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Pyrene	B17-Oc14985	CP	%	84			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic (filtered)	B17-Oc14988	CP	%	105			70-130	Pass	
Cadmium (filtered)	B17-Oc14988	CP	%	99			70-130	Pass	
Chromium (filtered)	B17-Oc14988	CP	%	102			70-130	Pass	
Copper (filtered)	B17-Oc14988	CP	%	98			70-130	Pass	
Lead (filtered)	B17-Oc14988	CP	%	98			70-130	Pass	
Mercury (filtered)	B17-Oc14988	CP	%	87			70-130	Pass	
Nickel (filtered)	B17-Oc14988	CP	%	97			70-130	Pass	
Zinc (filtered)	B17-Oc14988	CP	%	101			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	M17-Oc15002	NCP	mg/L	1.9	1.8	2.0	30%	Pass	
Chlorophyll a	B17-Oc14979	CP	ug/L	< 10	< 10	<1	30%	Pass	
Conductivity (at 25°C)	M17-Oc15023	NCP	uS/cm	1400	1400	1.0	30%	Pass	
Nitrate & Nitrite (as N)	M17-Oc15002	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Nitrate (as N)	M17-Oc15002	NCP	mg/L	0.03	0.03	5.0	30%	Pass	
Nitrite (as N)	M17-Oc15002	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
pH	M17-Oc15023	NCP	pH Units	7.9	7.8	pass	30%	Pass	
Phosphate total (as P)	M17-Oc14978	NCP	mg/L	0.10	0.09	11	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M17-Oc14978	NCP	mg/L	0.3	0.3	8.0	30%	Pass	
Turbidity	M17-Oc12949	NCP	NTU	< 1	< 1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Phosphorus reactive (as P)	B17-Oc14981	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbo	ns			Result 1	Result 2	RPD			
Acenaphthene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	B17-Oc14984	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Dissolved Oxygen	B17-Oc14984	CP	mg/L	8.7	8.8	1.0	30%	Pass	
Dissolved Oxygen (% Saturation)	B17-Oc14984	CP	%	97	98	1.0	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	B17-Oc14988	CP	mg/L	0.001	0.001	5.0	30%	Pass	
Cadmium (filtered)	B17-Oc14988	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	B17-Oc14988	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	B17-Oc14988	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	B17-Oc14988	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	B17-Oc14988	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	B17-Oc14988	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	B17-Oc14988	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Suspended Solids	B17-Oc14989	СР	mg/L	7.0	5.6	22	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Ryan Gilbert Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Alex Petridis Senior Analyst-Organic (VIC)
Huong Le Senior Analyst-Inorganic (VIC)
Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 567573-W

APPENDIX

EMR Search Certificates and Laboratory Certificates

Appendix V4 Surface water quality results—Round 2 (March 2018)

HELIDON TO CALVERT ENVIRONMENTAL IMPACT STATEMENT

ø,	,	CHAIN OF CUSTOD	Y RECORD		Eurofins Sydney l	111191	P +611,9900	y÷ 16 Mars filis 82% setiSW@autota		er NSW 2000		o	Eurofins Brisbane	mgt Lab	7 💌 18≪7		oranie Ovoletija Kosmika		1 :		P =613.85	Fown Classe Da SS4 5000 armoneWo@acard	+61 - 856+ 50%	
	Company	Aurecon		Purcha	se Order	2320	00					Project i	Manager	Lee	sa Leath	bridge			Project N	ame	Baseline S	Surface ¹	Water Moni	itoring
	Address	Level 14, 32 Turbot St	reet, Brisbane, QLD		is mgt te Na	1603	329AUR					Proje	ect Na	Inia	nd Rail	Project			Electronic R Forma					
Ce	ontact Name	Leesa Leathbridge		[ad]				ntrogen. oxidised igen)											Email for R	tesuits	leesa.leath	nbridge(@aurecong	roup.com
Cor	ntact Phone N	± 07 3173 8730		cify "Tetal" or "E				organic nitrog total nitrogen)	specific)					is (PAH)		itian)			Tum Ara		☐ 1 DAY'		DAY"	☐ 3 DAY•
Spe	ecial Direction	# 6 eskies in total		Analysis peeted please spe	Hd	Suspended Solids (SS)	Turbidity		Electrical conductivity (Actual and specific)	M8 · 8 metals	Total Phosphorus	Reactive Phosphorus	Chlorophyll a	aromatic hydrocarbons (PAH)	Salinity (pol)	Dissolved oxygen (% saturation)	Dissolved axygen (mg/L.)		Requirem		5 DAY (Std.)		other (Method of	Shipment
Re	enquished by	, //	7 1	माध्यक्षेत्र द्वार (६५		Suspende	ĬΠ	rogens (ammonia nitrate, nitrite nitrogen, total kjeldahl nitrogen,	conductivi	₩	Total P	Reactive	Chlo	ic aromalic	Salin	alved oxyç	Oissolved				· · · · · · · · · · · · · · · · · · ·	: 	ouner (#	
((Signature)	1. 1. 1.		Holo Vanere				nitrogens (ammonia nitrogen, total kjelt	lectrical					Polycyclic (Diss			1L Plastic 250mL Plastic corn. Plastic	125ml, Plastic 200ml, Amber Glass	40mt_vial	2	and Delivered	
(1	Time / Date)	13.341	232010	-				ed nitrog nitr	tu:										1L.P.	tzom. 200ml. An	40mLvial 125m, Amber Gla Jar		ostal	
Ne		Client Sample ID	Date	Matrix				Special													-	. Samp	ela Comments /	DG Hazard Warner
-	GAH	1A	०। विने उत्तर	W	X	X	X	X	×	X	×	X	X	X	X	X	X		2	1		2		
2	Gah 9	DUPI	(1	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2		
		TEIP!	ŧ.	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2		
,	GƏHS		ŧj	w	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1	:	2		
		BAH 3A	11	w	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2		
		12C2A		w	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2		
,			⁶² /0३/५८८	w	X	X	×	X	X	X	X	X	X	X	X	X	X		2	1		2		
8	Hac_			w	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2		
9	<u> 19c</u>		11	W	X	X	X	×	X	X	X	×	×	×	×	×	X		2	1		2		
	HSC	. 5		W				$\frac{\lambda}{X}$											2	1		 2		
	Car	IA (Alt)	· · · · · · · · · · · · · · · · · · ·																		4	_		
11				W		X		<u> </u>	X		X		X			X			2	1		2		
12			7.1	W	X					_ X	X		X	X	X		X		27	1 		2		.70
La	boratory Us		. Calcul	Ĵζ				ADL NE			ate	,	3/56		ime	. 1	.40	Signature	Et	<u> </u>			mperature Report No	13.2
		Received By			SYD E	NE I WEL	L PER	ADL NE	W DAR	C	ate	/	_/	,	ime			Signature				: '	rehou va	

6 6 8	CHAIN OF CUSTOD	Y RECORD		Eurofins Sydney L		6 46, 3,8800	g f. 16 V ars Road 843; SwitSW@e_rofins		ger NEW Jübe		Z	Eurofins Brisbane	mgt Lab	und 1 21 Small 2 HG 7 3997 (E EnviroSampl	4500	rame QLD 4172 secon au				ins mgt ourne Lab	P 46: 9 8564 5	Class Causer 20 1999 200 - F. Her (1894 CO) evicebecontra com a		
Compan	y Aurecon		Purchas	e Order	2320	00					Project I	Manager	Lees	sa Leath	bridge			Projec	t Name	Bas	eline Sur	face Water Mo	nitoring	
Address	Level 14, 32 Turbot Str	reet, Brisbane, QLD	Eurofin Quot		1603	329AUR	p				Proje	ect Na	Inla	nd Rail I	Project			Electroni For	c Resul mat	is				
Contact Na	me Leesa Leathbridg e		Filered")				, organic nitrogen, oxidised total nitrogen)											Emeil fo	r Resul	s lees	a.leathbr	ridge@aurecor	ngroup.cor	n
Contact Pho	ne № 07 3173 8730		pecify Total or '		6		organic nitro otal nitrogen	nd specific)			10		ons (PAH)		ration)	۱۲)		Tum / Requir		□ 1 D/		☐ 2 DAY	3 DAY	
Special Dire	ction # <u>6</u> eskies in total		Analysis requested, please s	된	Suspended Solids (SS)	Furbidity	ammonia, nitrate, nitrite, total kjeldahl nitrogen, to	ty (Actual a	M8 - 8 metals	Total Phosphorus	Reactive Phosphorus	Chlorophyll a	aromatic hydrocarbons (PAH)	Salinity (ppt)	Dissolved oxygen (% saturation)	Dissolved oxygen (mg/L)		·		✓ 5 DA	AY (Std.)	Other (of Shipment)
Re!inquishe	d by		নিজ্ঞ চাও থে		spende	Ţn	onia, nit kjeldah	nduclivi	M8.	fotat P	eactive	Chi	aromati	Salir	ed oxy	solved				•	•	Courier (#)
(Signatur			(Role YMero me		nS S		Speciated nitrogens (ammonia, nitrogen, total kjelc	Electrical conductivity (Actual and specific)			œ		Polycyclic		Dissol	Ö		IL Phastic 250ml, Plastic	125ml, Plastic	nt. Amber Glass 40ml.vial nt. Amber Glass	al plastic	Hand Delivere	ed	
(Time / Da	(<u>3</u> <u>3</u> 4	232018					ted nitro											1t.	125n	200ml. Amber 40ml.via 125ml. Amber	60 H	□ _{Postal}		
Ne	Client Sample ID	Date	Matrix				Specia								****							Sample Comment	ts / DG Hazard	Warning
1 <u>C</u> a	RKUA	en/oz/18	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2		1	2	_		
² CQ	KIOA	и	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2		1	2	•		
3 Ca	K9 A	FĮ	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2		1	2	_		
	KTA	1/	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2		1	2	_		
_	<u> </u>	53/02/12	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2		1	2	_		
	KTA (AIE)	81 20186	W	X	X	X	X	X	X	X	X	X	×	X	X	X		2		1	2	-		
7	K 13A	(1	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2		1	2			
	46A	l _j	W	×	×	×	X	X	X	X	×	×	×	×	X	X		. 2		1	2	-		
, <u>C</u> @)	CRA		W	X	X	X	X	X	X	X	X	X	X	X	X	X		2		1	2	-		
	-5A(1)	11	W	×	X	×	X	X	X	X	X	×	X	X	×	X		2		1	2	••		
<u>් උන</u>		11	W	X	X	X	X	X	X	X	X	X	X	X	X	X	*****	2	***************	1	2	.		
	C DUPI	<u> </u>	w	X		X	X	X	×	X	X	,	X	×		X		2	4	1	2			
Laboratory	Use Only Received By	Moderno	.	<u>.</u> (ADL NE			ate ate		Z15€ _1'		me 		<u>40</u>	Signature <		1	Δ.		Temperature · Report №	. (Z	.52_

ක් ^ක ි ම ි ම		CUSTODY	RECORD		Eurofins Sydney L		7 ↔ 174902	g (- 14 Mars Roa 64% contraktion reteri		er NSW 2066		Z	Eurofins Brisbane	i mgt Lab	P -61 1 3902	Berood Place Mil 4600 pla@LD@esrafin	rame OLO 4°72 s com au			Eurofin: Melbour	F +61 9 81	Town Class Calveign VIC 316 RESSO: F +613 8564 5 ampleViciffeurofins com ac	ē ēșe
Company	Aurecon			Purcha	se Order	2320	00					Project	Manager	Lee	sa Leatl	nbridge			Projec	t Name	Baseline S	urface Water N	Monitoring
Address	Level 14	, 32 Turbot Street	t, Brisbane, QLD		ns∣mgt teNº	1603	329AUR					Prox	ect No	Inla	nd Rail	Project				nc Results rmat			
Contact Nar	ne Leesa Le	eathbridge		illered")				nitrogen, oxidised gen)											Email fo	or Results	leesa.leath	nbridge@aurec	ongroup.com
Contact Phon	e № 07 3173	8730		scify "Total" or "F				organic nitrog total nitrogen)	d specific)					ns (PAH)		ation)	ā			Around	☐ 1 DAY*	☐ 2 DAY	☐ 3 DAY* * Surdinarijasi apply
Special Direct	tion # <u>6</u> e	skies in total		Analysis uested, please spe	Hd	Suspended Solids (SS)	Turbidity	ale, nifrite, nifrogen, t	conductivity (Actual and specific)	M8 · 8 metals	fotal Phosphorus	Reactive Phosphorus	Chlorophyll a	aromatic hydrocarbons (PAH)	Salinity (ppt)	Dissolved oxygen (% saturation)	Dissolved oxygen (mg/L.)		Kequs	rements Cor	5 DAY (Std.)	Other {) nod of Shipment
Relinquished	l by	~		state are req		epuedsi	Ē		nductivi	- 8M	Total Pi	leactive	Cho	aromatic	Salir	ved oxy	ssolved					Courser (#)
(Signature)	(A)			(Note Where me		ŝ		nitrogens (ammonia. nitrogen, total kjek	Electrical co			Œ		Polycyclic		Dissol	Ö		il Piastic 250ml Plastic	125ml, Plastic 200ml, Amber Glass	Abrit, viasi ni. Ambor Giassi Jas	Hand Delw	
(Time / Date	e) 1 <u>3 3</u>	ધ :	<u>2,3,2019</u>					aled natio											11.	125a 200mL	Abmusia 125mi, Ambor Jar	Postal	
Na	Client Sam	ple ID	Date	Matrix				Specia														Sample Comm	ents / DG Hazard Warning
1 Cak	CTRIP		38/52/18	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2	
² CAY	.14 A		H	w	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2	
n .	-2A		h	w	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1	:	2	
	CIIA		61/03/18	w	×	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2	
5 Hac	CISA		1,	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2	
	HOA (Al)	1,	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1	:	2	
7 GOH		Marketine day of manufactured at Market Marketine and Mark	11	w	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2	
	1 8A		h	w	X	X	X	X	X	X	X	X	X	×	X	X	X		2	1		2	
	I TH (AIF)	V	w	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2	
" <u>Б</u> ан			<i>II</i>	W	X	X	X	X	X	X	X	X	X	×	X	X	X		2	1		2	
	15A		\(w	X	X	X	X	X	X	X	X	X	X	X	X	X		2	1		2	
	1 412		TI TI	W	×	X	X	X	×	X	X	×		X	×	X	·		2	1 -/-		2	
Laboratory (Rece Use Only	ved By	Valant	l oi	`	~		ADL NE			ate ate		<u> </u>		ime ime	1	40	Signature Signature	T	Z.	<u>~</u>	Temperature Report No	13.2

Certificate of Analysis

Aurecon Australia (BRIS) Pty Ltd Level 14, 32 Turbot St Brisbane QLD 4001

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: LEESA LEATHBRIDGE

Report 587469-W

Project name BASELINE SURFACE WATER MONITORING

Project ID INLAND RAIL PROJECT

Received Date Mar 02, 2018

Client Sample ID			G2H 1A	G2H DUP1	G2H TRIP1	G2H 2A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B18-Ma02442	B18-Ma02443	B18-Ma02444	B18-Ma02446
Date Sampled			Mar 01, 2018	Mar 01, 2018	Mar 01, 2018	Mar 01, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		-				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	101	50	60	66
p-Terphenyl-d14 (surr.)	1	%	95	53	54	87
Ammonia (as N)	0.01	mg/L	0.04	0.17	0.03	0.04
Chlorophyll a	5	ug/L	< 5	< 5	< 5	< 5
Conductivity (at 25°C)	1	uS/cm	760	770	760	430
Dissolved Oxygen	0.01	mg/L	8.0	7.6	7.9	8.2
Dissolved Oxygen (% Saturation)		%	88	85	87	91
Nitrate & Nitrite (as N)	0.05	mg/L	1.9	1.9	1.8	1.3
Nitrate (as N)	0.02	mg/L	1.9	1.9	1.8	1.2
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	0.02
Organic Nitrogen (as N)	0.2	mg/L	1.3	0.6	1.2	0.7
рН (at 25°С)	0.1	pH Units	8.0	7.9	8.1	8.3
Phosphate total (as P)	0.05	mg/L	1.2	1.3	1.1	0.11
Phosphorus reactive (as P)	0.05	mg/L	0.92	0.90	0.92	< 0.05
Salinity (determined from EC)*	20	mg/L	370	380	370	210
Suspended Solids	1	mg/L	2.0	3.2	3.5	2.6
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.3	0.8	1.2	0.7

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			G2H 1A Water B18-Ma02442 Mar 01, 2018	G2H DUP1 Water B18-Ma02443 Mar 01, 2018	G2H TRIP1 Water B18-Ma02444 Mar 01, 2018	G2H 2A Water B18-Ma02446 Mar 01, 2018
Test/Reference	LOR	Unit				
Total Nitrogen (as N) Turbidity	0.2	mg/L NTU	2.2 2.8	2.7 2.5	3.0 2.4	2.0
Arsenic (filtered)	0.001	ma/l	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0001	mg/L mg/L	< 0.0002	< 0.0002	< 0.0001	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	0.011	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.008	0.009	0.008	0.002
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.003	0.007	0.003	0.001
Zinc (filtered)	0.005	mg/L	0.052	0.054	0.051	< 0.005

Client Sample ID			G2H 3A	H2C 2A	H2C 13A	H2C 14A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B18-Ma02447	B18-Ma02448	B18-Ma02449	B18-Ma02450 Mar 02, 2018
Date Sampled			Mar 01, 2018	Mar 01, 2018	Mar 02, 2018	
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	73	79	56	63
p-Terphenyl-d14 (surr.)	1	%	83	112	52	61
Ammonia (as N)	0.01	mg/L	< 0.01	0.03	0.04	0.02
Chlorophyll a	5	ug/L	< 5	< 5	< 5	< 5
Conductivity (at 25°C)	1	uS/cm	410	3600	310	300
Dissolved Oxygen	0.01	mg/L	8.4	7.2	6.9	7.1
Dissolved Oxygen (% Saturation)		%	93	80	77	78
Nitrate & Nitrite (as N)	0.05	mg/L	1.4	37	0.14	0.22
Nitrate (as N)	0.02	mg/L	1.4	37	0.13	0.20
Nitrite (as N)	0.02	mg/L	< 0.02	0.34	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	0.8	1.9	0.6	0.5
pH (at 25°C)	0.1	pH Units	8.1	7.9	8.0	8.1

Client Sample ID Sample Matrix			G2H 3A Water	H2C 2A Water	H2C 13A Water	H2C 14A Water
Eurofins mgt Sample No.			B18-Ma02447	B18-Ma02448	B18-Ma02449	B18-Ma02450
Date Sampled			Mar 01, 2018	Mar 01, 2018	Mar 02, 2018	Mar 02, 2018
Test/Reference	LOR	Unit				
Phosphate total (as P)	0.05	mg/L	0.24	0.32	0.44	0.40
Phosphorus reactive (as P)	0.05	mg/L	< 0.05	0.13	0.25	0.21
Salinity (determined from EC)*	20	mg/L	200	1900	150	140
Suspended Solids	1	mg/L	5.9	2.8	13	11
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.8	1.9	0.6	0.5
Total Nitrogen (as N)	0.2	mg/L	2.2	43	0.74	0.72
Turbidity	1	NTU	2.8	1.7	17	14
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.001	0.004	0.003	0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.002	0.006	0.006	0.002
Zinc (filtered)	0.005	mg/L	0.006	< 0.005	< 0.005	0.012

Client Sample ID			H2C 17A	C2K 1A (ALT)	C2K 11A	C2K 10A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B18-Ma02451	B18-Ma02452	B18-Ma02453	B18-Ma02454
Date Sampled			Mar 02, 2018	Mar 02, 2018	Feb 27, 2018	Feb 27, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluorantheneN07	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	69	57	72	69
p-Terphenyl-d14 (surr.)	1	%	87	70	83	78
Ammonia (as N)	0.01	mg/L	0.02	0.02	0.05	0.02
Chlorophyll a	5	ug/L	< 5	< 5	< 5	6.0
Conductivity (at 25°C)	1	uS/cm	340	290	49	470
Dissolved Oxygen	0.01	mg/L	7.8	6.8	4.1	7.9
Dissolved Oxygen (% Saturation)		%	87	75	45	88

Client Sample ID Sample Matrix			H2C 17A Water	C2K 1A (ALT) Water	C2K 11A Water	C2K 10A Water
Eurofins mgt Sample No.			B18-Ma02451	B18-Ma02452	B18-Ma02453	B18-Ma02454
Date Sampled			Mar 02, 2018	Mar 02, 2018	Feb 27, 2018	Feb 27, 2018
Test/Reference	LOR	Unit	Mai 02, 2010		1 05 21, 2010	1 05 27, 2010
resurveillellice	LOR	Offic				
Nitrate & Nitrite (as N)	0.05	mg/L	0.19	0.25	< 0.05	< 0.05
Nitrate (as N)	0.02	mg/L	0.16	0.20	< 0.02	< 0.02
Nitrite (as N)	0.02	mg/L	0.03	0.05	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	0.3	1.0	0.6	0.5
pH (at 25°C)	0.1	pH Units	8.3	7.7	6.8	8.0
Phosphate total (as P)	0.05	mg/L	0.39	0.48	0.18	0.06
Phosphorus reactive (as P)	0.05	mg/L	0.20	0.32	< 0.05	< 0.05
Salinity (determined from EC)*	20	mg/L	160	140	30	230
Suspended Solids	1	mg/L	21	22	33	14
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.3	1.0	0.6	0.5
Total Nitrogen (as N)	0.2	mg/L	0.49	1.3	0.6	0.5
Turbidity	1	NTU	8.4	58	32	9.0
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	0.003	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.001	0.004	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	0.008	< 0.005	< 0.005

Client Sample ID			C2K 9A	C2K 7A	C2K 8A	C2K 7A (ALT)
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B18-Ma02455	B18-Ma02456	B18-Ma02457	B18-Ma02458
Date Sampled			Feb 27, 2018	Feb 27, 2018	Feb 28, 2018	Feb 28, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	59	60	81	81
p-Terphenyl-d14 (surr.)	1	%	58	60	81	108

Client Sample ID			C2K 9A	C2K 7A	C2K 8A	C2K 7A (ALT)
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B18-Ma02455	B18-Ma02456	B18-Ma02457	B18-Ma02458
Date Sampled			Feb 27, 2018	Feb 27, 2018	Feb 28, 2018	Feb 28, 2018
Test/Reference	LOR	Unit				
Ammonia (as N)	0.01	mg/L	0.03	0.03	0.02	< 0.01
Chlorophyll a	5	ug/L	< 5	< 5	< 5	< 5
Conductivity (at 25°C)	1	uS/cm	160	180	180	140
Dissolved Oxygen	0.01	mg/L	7.5	8.3	7.9	8.4
Dissolved Oxygen (% Saturation)		%	83	92	87	93
Nitrate & Nitrite (as N)	0.05	mg/L	0.06	0.07	0.07	< 0.05
Nitrate (as N)	0.02	mg/L	0.04	0.07	0.06	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	0.03
Organic Nitrogen (as N)	0.2	mg/L	0.8	0.9	0.7	0.5
pH (at 25°C)	0.1	pH Units	7.4	7.7	7.6	7.4
Phosphate total (as P)	0.05	mg/L	0.08	0.09	0.07	0.07
Phosphorus reactive (as P)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Salinity (determined from EC)*	20	mg/L	80	90	90	70
Suspended Solids	1	mg/L	45	14	7.7	10
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.8	0.9	0.7	0.5
Total Nitrogen (as N)	0.2	mg/L	0.86	0.97	0.77	0.5
Turbidity	1	NTU	140	120	99	90
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.002	0.001	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.002	0.001	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	0.009	< 0.005	0.010	< 0.005

Client Sample ID Sample Matrix			C2K 13A Water	C2K 6A Water	C2K 12A Water	C2K 5A (1) Water
Eurofins mgt Sample No.			B18-Ma02459	B18-Ma02460	B18-Ma02461	B18-Ma02462
Date Sampled			Feb 28, 2018	Feb 28, 2018	Feb 28, 2018	Feb 28, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			C2K 13A	C2K 6A	C2K 12A	C2K 5A (1)
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B18-Ma02459	B18-Ma02460	B18-Ma02461	B18-Ma02462
Date Sampled			Feb 28, 2018	Feb 28, 2018	Feb 28, 2018	Feb 28, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		•				
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	99	79	55	79
p-Terphenyl-d14 (surr.)	1	%	64	118	58	113
Ammonia (as N)	0.01	mg/L	< 0.01	0.02	0.07	0.19
Chlorophyll a	5	ug/L	< 5	< 5	< 5	< 5
Conductivity (at 25°C)	1	uS/cm	200	250	180	130
Dissolved Oxygen	0.01	mg/L	7.4	7.3	7.3	2.8
Dissolved Oxygen (% Saturation)		%	82	80	81	32
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05	0.19	< 0.05
Nitrate (as N)	0.02	mg/L	< 0.02	< 0.02	0.19	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	0.6	0.7	0.6	1.1
pH (at 25°C)	0.1	pH Units	7.6	7.6	7.3	6.8
Phosphate total (as P)	0.05	mg/L	0.07	0.08	0.08	0.12
Phosphorus reactive (as P)	0.05	mg/L	< 0.05	< 0.05	< 0.05	0.07
Salinity (determined from EC)*	20	mg/L	95	120	90	65
Suspended Solids	1	mg/L	20	26	6.4	17
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.6	0.7	0.7	1.1
Total Nitrogen (as N)	0.2	mg/L	0.6	0.7	0.89	1.1
Turbidity	1	NTU	120	98	97	56
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.001	0.001	0.002	0.003
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.001	0.001	0.001	0.002
Zinc (filtered)	0.005	mg/L	0.011	0.006	< 0.005	0.009

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			C2K 5A Water B18-Ma02463 Feb 28, 2018	C2K DUP1 Water B18-Ma02464 Feb 28, 2018	C2K TRIP Water B18-Ma02465 Feb 28, 2018	C2K 14A Water B18-Ma02466 Feb 28, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

PO	~
	$\mathbf{v}_{\mathbf{I}}$
	5-0

Client Sample ID			C2K 5A	C2K DUP1	C2K TRIP	C2K 14A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B18-Ma02463	B18-Ma02464	B18-Ma02465	B18-Ma02466
Date Sampled			Feb 28, 2018	Feb 28, 2018	Feb 28, 2018	Feb 28, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	<u>'</u>					
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	53	105	84	68
p-Terphenyl-d14 (surr.)	1	%	64	132	117	88
		•				
Ammonia (as N)	0.01	mg/L	0.28	0.15	0.23	0.02
Chlorophyll a	5	ug/L	11	19	19	< 5
Conductivity (at 25°C)	1	uS/cm	270	270	260	220
Dissolved Oxygen	0.01	mg/L	7.4	7.9	7.2	7.7
Dissolved Oxygen (% Saturation)		%	82	87	80	85
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Nitrate (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	1.2	1.2	1.2	0.7
pH (at 25°C)	0.1	pH Units	8.5	8.9	8.9	7.6
Phosphate total (as P)	0.05	mg/L	0.07	0.06	0.05	0.09
Phosphorus reactive (as P)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Salinity (determined from EC)*	20	mg/L	130	130	125	110
Suspended Solids	1	mg/L	25	10	12	9.3
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.5	1.4	1.4	0.7
Total Nitrogen (as N)	0.2	mg/L	1.5	1.4	1.4	0.7
Turbidity	1	NTU	7.9	6.9	7.0	62
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.002	0.002	0.002	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			C2K 2A Water B18-Ma02467 Feb 28, 2018	H2C 11A Water B18-Ma02468 Mar 01, 2018	G2H 10A (ALT) Water B18-Ma02470 Mar 01, 2018	G2H 9A Water B18-Ma02471 Mar 01, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			C2K 2A	H2C 11A	G2H 10A (ALT)	G2H 9A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B18-Ma02467	B18-Ma02468	B18-Ma02470	B18-Ma02471
Date Sampled			Feb 28, 2018	Mar 01, 2018	Mar 01, 2018	Mar 01, 2018
Test/Reference	LOR	Unit		1	61, 2010	
Polycyclic Aromatic Hydrocarbons	LOIT	Offic				
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	77	73	96	76
p-Terphenyl-d14 (surr.)	1	%	83	104	127	94
Ammonia (as N)	0.01	mg/L	0.07	< 0.01	0.19	< 0.01
Chlorophyll a	5	ug/L	< 5	29	12	< 5
Conductivity (at 25°C)	1	uS/cm	200	1100	510	810
Dissolved Oxygen	0.01	mg/L	5.8	5.9	4.6	5.9
Dissolved Oxygen (% Saturation)		%	65	64	51	65
Nitrate & Nitrite (as N)	0.05	mg/L	0.05	< 0.05	0.23	< 0.05
Nitrate (as N)	0.02	mg/L	0.05	< 0.02	0.21	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	0.7	0.7	0.6	0.3
pH (at 25°C)	0.1	pH Units	7.4	8.5	7.8	8.0
Phosphate total (as P)	0.05	mg/L	0.54	0.19	0.25	0.09
Phosphorus reactive (as P)	0.05	mg/L	0.36	< 0.05	0.06	< 0.05
Salinity (determined from EC)*	20	mg/L	100	500	250	400
Suspended Solids	1	mg/L	49	53	170	4.0
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.8	0.7	0.8	0.3
Total Nitrogen (as N)	0.2	mg/L	0.85	0.7	1.0	0.3
Turbidity	1	NTU	95	32	420	2.8
Heavy Metals	1	1				
Arsenic (filtered)	0.001	mg/L	< 0.001	0.001	0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.004	< 0.001	0.003	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.004	0.002	0.009	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	0.005	< 0.005

Client Sample ID			G2H 7A (ALT)	G2H 6A	G2H 5A	G2H 4A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B18-Ma02473	B18-Ma02474	B18-Ma02475	B18-Ma02476
Date Sampled			Mar 01, 2018	Mar 01, 2018	Mar 01, 2018	Mar 01, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		•				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	70	104	81	86
p-Terphenyl-d14 (surr.)	1	%	96	147	107	120
Ammonia (as N)	0.01	mg/L	0.02	0.03	0.11	< 0.01
Chlorophyll a	5	ug/L	< 5	< 5	< 5	< 5
Conductivity (at 25°C)	1	uS/cm	570	800	950	1000
Dissolved Oxygen	0.01	mg/L	5.7	6.8	8.4	6.7
Dissolved Oxygen (% Saturation)		%	64	75	93	74
Nitrate & Nitrite (as N)	0.05	mg/L	0.46	0.31	0.18	0.13
Nitrate (as N)	0.02	mg/L	0.41	0.30	0.17	0.12
Nitrite (as N)	0.02	mg/L	0.05	< 0.02	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	1.2	0.4	0.3	0.3
pH (at 25°C)	0.1	pH Units	7.6	8.1	8.6	8.4
Phosphate total (as P)	0.05	mg/L	0.09	0.12	0.17	0.25
Phosphorus reactive (as P)	0.05	mg/L	< 0.05	< 0.05	0.06	0.08
Salinity (determined from EC)*	20	mg/L	280	400	460	490
Suspended Solids	1	mg/L	89	18	18	30
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.2	0.4	0.4	0.3
Total Nitrogen (as N)	0.2	mg/L	1.7	0.7	0.58	0.43
Turbidity	1	NTU	210	28	11	19
Heavy Metals		1				
Arsenic (filtered)	0.001	mg/L	0.002	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.006	0.001	0.002	0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.006	0.004	0.003	0.003
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	0.011	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Mar 08, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Water by GCMS			
Chlorophyll a	Melbourne	Mar 06, 2018	2 Day
- Method: APHA Method 10200H			
Conductivity (at 25°C)	Melbourne	Mar 05, 2018	28 Day
- Method: LTM-INO-4030 Conductivity			
Dissolved Oxygen	Melbourne	Mar 05, 2018	1 Day
- Method: LTM-INO-4130 Determination of Dissolved Oxygen using a DO meter			
Dissolved Oxygen (% Saturation)	Melbourne	Mar 05, 2018	1 Day
- Method: LTM-INO-4130 Determination of Dissolved Oxygen using a DO meter			
pH (at 25°C)	Melbourne	Mar 05, 2018	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Phosphate total (as P)	Melbourne	Mar 05, 2018	28 Day
- Method: APHA 4500-P E. Phosphorous			
Phosphorus reactive (as P)	Melbourne	Mar 05, 2018	2 Day
- Method: APHA4500-PO4			
Salinity (determined from EC)*	Brisbane	Mar 08, 2018	0 Day
Suspended Solids	Melbourne	Mar 05, 2018	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Melbourne	Mar 06, 2018	2 Day
- Method: LTM-INO-4140 Turbidity by Nephelometric Method			
Metals M8 filtered	Melbourne	Mar 05, 2018	28 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Nitrogens (speciated)			
Ammonia (as N)	Melbourne	Mar 05, 2018	28 Day
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Nitrate & Nitrite (as N)	Melbourne	Mar 05, 2018	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA			
Nitrate (as N)	Melbourne	Mar 05, 2018	7 Day
- Method: APHA 4500-NO3 Nitrate Nitrogen by FIA			
Nitrite (as N)	Melbourne	Mar 05, 2018	2 Day
- Method: APHA 4500-NO2 Nitrite Nitrogen by FIA			•
Organic Nitrogen (as N)	Melbourne	Mar 02, 2018	7 Day
- Method: APHA 4500 Organic Nitrogen (N)			-
Total Kjeldahl Nitrogen (as N)	Melbourne	Mar 05, 2018	7 Day
- Method: APHA 4500 TKN			-

Repeat Samples

Description	Testing Site	Extracted	Holding Time
Nitrogens (speciated)			
Nitrate & Nitrite (as N)	Melbourne	Mar 08, 2018	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA			
Nitrate (as N)	Melbourne	Mar 08, 2018	7 Day
- Method: APHA 4500-NO3 Nitrate Nitrogen by FIA			
Nitrite (as N)	Melbourne	Mar 08, 2018	2 Day
- Method: APHA 4500-NO2 Nitrite Nitrogen by FIA			

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271

23200

587469

07 3173 8000

+61 7 3173 8001

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Page 11 of 21

Company Name: Aurecon Australia (BRIS) Pty Ltd

Address: Level 14, 32 Turbot St

Brisbane QLD 4001

Project Name: BASELINE SURFACE WATER MONITORING

Project ID: INLAND RAIL PROJECT

Date Reported:Mar 13, 2018

Received: Mar 2, 2018 1:40 PM
Due: Mar 9, 2018

Priority: 5 Day

Contact Name: LEESA LEATHBRIDGE

	0,000.121																Eur	ofins	mgt Analytical Services Manager : Ryan Gilbert
		Sa	mple Detail			Chlorophyll a	Conductivity (at 25°C)	Dissolved Oxygen	Dissolved Oxygen (% Saturation)	pH (at 25°C)	Phosphate total (as P)	Phosphorus reactive (as P)	Salinity (expressed as TDS)*	Suspended Solids	Turbidity	Polycyclic Aromatic Hydrocarbons	Metals M8 filtered	Nitrogens (speciated)	
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217																
Bris	bane Laborator	y - NATA Site #	20794																
Pert	h Laboratory - I	NATA Site # 237	36																
Exte	rnal Laboratory	/		_	1														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
1	G2H 1A	Mar 01, 2018		Water	B18-Ma02442	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
2	G2H DUP1	Mar 01, 2018		Water	B18-Ma02443	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
3	G2H TRIP1	Mar 01, 2018		Water	B18-Ma02444	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
4	G2H 2A	Mar 01, 2018		Water	B18-Ma02446	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
5	G2H 3A	Mar 01, 2018		Water	B18-Ma02447	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	
6	H2C 2A	Mar 01, 2018		Water	B18-Ma02448	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	
7	H2C 13A	Mar 02, 2018		Water	B18-Ma02449	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	
8	H2C 14A	Mar 02, 2018		Water	B18-Ma02450	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	
9	H2C 17A	Mar 02, 2018		Water	B18-Ma02451	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Χ	

Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172

ABN : 50 005 085 521 Telephone: +61 7 3902 4600 Report Number: 587469-W

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

23200

587469

07 3173 8000

+61 7 3173 8001

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Page 12 of 21

Mar 2, 2018 1:40 PM

Mar 9, 2018

5 Day

Eurofins | mgt Analytical Services Manager : Ryan Gilbert

Company Name: Aurecon Australia (BRIS) Pty Ltd

Address: Level 14, 32 Turbot St

> Brisbane QLD 4001

Project Name: BASELINE SURFACE WATER MONITORING

Project ID: **INLAND RAIL PROJECT**

Date Reported:Mar 13, 2018

LEESA LEATHBRIDGE **Contact Name:**

		Sa	mple Detail			Chlorophyll a	Conductivity (at 25°C)	Dissolved Oxygen	Dissolved Oxygen (% Saturation)	pH (at 25°C)	Phosphate total (as P)	Phosphorus reactive (as P)	Salinity (expressed as TDS)*	Suspended Solids	Turbidity	Polycyclic Aromatic Hydrocarbons	Metals M8 filtered	Nitrogens (speciated)
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217															
Bris	bane Laborator	y - NATA Site #	20794															
Pert	h Laboratory - N	IATA Site # 237																
10	C2K 1A (ALT)	Mar 02, 2018		Water	B18-Ma02452	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
11	C2K 11A	Feb 27, 2018		Water	B18-Ma02453	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
12	C2K 10A	Feb 27, 2018		Water	B18-Ma02454	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
13	C2K 9A	Feb 27, 2018		Water	B18-Ma02455	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
14	C2K 7A	Feb 27, 2018		Water	B18-Ma02456	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
15	C2K 8A	Feb 28, 2018		Water	B18-Ma02457	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
16	C2K 7A (ALT)	Feb 28, 2018		Water	B18-Ma02458	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
17	C2K 13A	Feb 28, 2018		Water	B18-Ma02459	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
18	C2K 6A	Feb 28, 2018		Water	B18-Ma02460	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
19	C2K 12A	Feb 28, 2018		Water	B18-Ma02461	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
20	C2K 5A (1)	Feb 28, 2018		Water	B18-Ma02462	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
21	C2K 5A	Feb 28, 2018		Water	B18-Ma02463	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Χ	Х	Χ	Χ

Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172

Report Number: 587469-W

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

07 3173 8000

+61 7 3173 8001

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Aurecon Australia (BRIS) Pty Ltd

Address: Level 14, 32 Turbot St

Brisbane QLD 4001

Project Name: BASELINE SURFACE WATER MONITORING

Project ID: INLAND RAIL PROJECT

 Order No.:
 23200
 Received:
 Mar 2, 2018 1:40 PM

 Report #:
 587469
 Due:
 Mar 9, 2018

Priority: 5 Day

Contact Name: LEESA LEATHBRIDGE

mgt Analytical Services Manager : Ryan Gilbert

																	Euro	ofins
		Sa	mple Detail			Chlorophyll a	Conductivity (at 25°C)	Dissolved Oxygen	Dissolved Oxygen (% Saturation)	pH (at 25°C)	Phosphate total (as P)	Phosphorus reactive (as P)	Salinity (expressed as TDS)*	Suspended Solids	Turbidity	Polycyclic Aromatic Hydrocarbons	Metals M8 filtered	Nitrogens (speciated)
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	?71		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217															
Bris	bane Laborator	y - NATA Site #	20794															
Pert	h Laboratory - N	NATA Site # 237	736															
22	C2K DUP1	Feb 28, 2018		Water	B18-Ma02464	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
23	C2K TRIP	Feb 28, 2018		Water	B18-Ma02465	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
24	C2K 14A	Feb 28, 2018		Water	B18-Ma02466	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
25	C2K 2A	Feb 28, 2018		Water	B18-Ma02467	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
26	H2C 11A	Mar 01, 2018		Water	B18-Ma02468	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
27	G2H 10A (ALT)	Mar 01, 2018		Water	B18-Ma02470	Х	Х	х	Х	Х	х	Х	х	Х	Х	х	Х	Х
28	G2H 9A	Mar 01, 2018		Water	B18-Ma02471	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
29	G2H 7A (ALT)	Mar 01, 2018		Water	B18-Ma02473	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
30	G2H 6A	Mar 01, 2018		Water	B18-Ma02474	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х
31	G2H 5A	Mar 01, 2018		Water	B18-Ma02475	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х
32	G2H 4A	Mar 01, 2018		Water	B18-Ma02476	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172

ABN : 50 005 085 521 Telephone: +61 7 3902 4600 Report Number: 587469-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

07 3173 8000

+61 7 3173 8001

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Z/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Aurecon Australia (BRIS) Pty Ltd

Address: Level 14, 32 Turbot St

> Brisbane QLD 4001

Project Name: BASELINE SURFACE WATER MONITORING

Project ID: INLAND RAIL PROJECT Order No.: 23200 Received: Mar 2, 2018 1:40 PM Report #: 587469 Due: Mar 9. 2018

Priority: 5 Day

LEESA LEATHBRIDGE **Contact Name:**

												Eur	ofins	mgt Analytical Services Manager : Ryan Gilbert
Sample Detail	Chlorophyll a	Conductivity (at 25°C)	Dissolved Oxygen	Dissolved Oxygen (% Saturation)	pH (at 25°C)	Phosphate total (as P)	Phosphorus reactive (as P)	Salinity (expressed as TDS)*	Suspended Solids	Turbidity	Polycyclic Aromatic Hydrocarbons	Metals M8 filtered	Nitrogens (speciated)	
Melbourne Laboratory - NATA Site # 1254 & 14271	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Sydney Laboratory - NATA Site # 18217														
Brisbane Laboratory - NATA Site # 20794														
Perth Laboratory - NATA Site # 23736														
Test Counts	32	32	32	32	32	32	32	32	32	32	32	32	32	

Phone:

Fax:

Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172

ABN: 50 005 085 521 Telephone: +61 7 3902 4600 Report Number: 587469-W

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a drv basis

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

 Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172
 Page 15 of 21

 ABN : 50 005 085 521 Telephone: +61 7 3902 4600
 Report Number: 587469-W

Quality Control Results

Test	Lab Sample ID	Units	Result	Repeat			Qualifying Code
Repeat Analysis							
Nitrate & Nitrite (as N)	B18-Ma02448	mg/L	37	41			
Nitrate (as N)	B18-Ma02448	mg/L	37	41			
Nitrite (as N)	B18-Ma02448	mg/L	0.34	< 0.4			
Test		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			1				
Polycyclic Aromatic Hydrocarbons							
Acenaphthene		mg/L	< 0.001		0.001	Pass	
Acenaphthylene		mg/L	< 0.001		0.001	Pass	
Anthracene		mg/L	< 0.001		0.001	Pass	
Benz(a)anthracene		mg/L	< 0.001		0.001	Pass	
Benzo(a)pyrene		mg/L	< 0.001		0.001	Pass	
Benzo(b&j)fluoranthene		mg/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene		mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene		mg/L	< 0.001		0.001	Pass	
Chrysene		mg/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene		mg/L	< 0.001		0.001	Pass	
Fluoranthene		mg/L	< 0.001		0.001	Pass	
Fluorene		mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene		mg/L	< 0.001		0.001	Pass	
Naphthalene		mg/L	< 0.001		0.001	Pass	
Phenanthrene		mg/L	< 0.001		0.001	Pass	
Pyrene		mg/L	< 0.001		0.001	Pass	
Method Blank							
Ammonia (as N)		mg/L	< 0.01		0.01	Pass	
Chlorophyll a		ug/L	< 5		5	Pass	
Dissolved Oxygen (% Saturation)		%	98			N/A	
Nitrate & Nitrite (as N)		mg/L	< 0.05		0.05	Pass	
Nitrate (as N)		mg/L	< 0.02		0.02	Pass	
Nitrite (as N)		mg/L	< 0.02		0.02	Pass	
Phosphate total (as P)		mg/L	< 0.05		0.05	Pass	
Phosphorus reactive (as P)		mg/L	< 0.05		0.05	Pass	
Suspended Solids		mg/L	< 1		1	Pass	
Total Kjeldahl Nitrogen (as N)		mg/L	< 0.2		0.2	Pass	
Turbidity		NTU	< 1		1	Pass	
Method Blank							
Heavy Metals							
Arsenic (filtered)		mg/L	< 0.001		0.001	Pass	
Cadmium (filtered)		mg/L	< 0.0002		0.0002	Pass	
Chromium (filtered)		mg/L	< 0.001		0.001	Pass	
Copper (filtered)		mg/L	< 0.001		0.001	Pass	
Lead (filtered)		mg/L	< 0.001		0.001	Pass	
Mercury (filtered)		mg/L	< 0.0001		0.0001	Pass	
Nickel (filtered)		mg/L	< 0.001		0.001	Pass	
Zinc (filtered)		mg/L	< 0.005		0.005	Pass	
LCS - % Recovery							
Polycyclic Aromatic Hydrocarbons							
Acenaphthene		%	106		70-130	Pass	
Acenaphthylene		%	110		70-130	Pass	
Anthracene		%	96		70-130	Pass	
Benz(a)anthracene		%	96		70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene			%	105	70-130	Pass	
Benzo(b&j)fluoranthene			%	76	70-130	Pass	
Benzo(g.h.i)perylene			%	89	70-130	Pass	
Benzo(k)fluoranthene			%	84	70-130	Pass	
Chrysene			%	84	70-130	Pass	
Dibenz(a.h)anthracene			%	120	70-130	Pass	
Fluoranthene			%	80	70-130	Pass	
Fluorene			%	109	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	124	70-130	Pass	
Naphthalene			%	95	70-130	Pass	
Phenanthrene			%	102	70-130	Pass	
Pyrene			%	104	70-130	Pass	
LCS - % Recovery					,		
Ammonia (as N)			%	109	70-130	Pass	
Nitrate & Nitrite (as N)			%	103	70-130	Pass	
Nitrate (as N)			%	83	70-130	Pass	
Nitrite (as N)			%	110	70-130	Pass	
Phosphate total (as P)			%	89	70-130	Pass	
Phosphorus reactive (as P)			%	106	70-130	Pass	
Suspended Solids			%	98	70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	91	70-130	Pass	
LCS - % Recovery				<u> </u>		. 455	
Heavy Metals							
Arsenic (filtered)			%	90	80-120	Pass	
Cadmium (filtered)			%	92	80-120	Pass	
Chromium (filtered)			%	92	80-120	Pass	
Copper (filtered)			%	93	80-120	Pass	
Lead (filtered)			%	96	80-120	Pass	
Mercury (filtered)			%	102	70-130	Pass	
Nickel (filtered)			%	93	80-120	Pass	
Zinc (filtered)			%	94	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic (filtered)	M18-Ma03965	NCP	%	92	70-130	Pass	
Cadmium (filtered)	M18-Ma03965	NCP	%	96	70-130	Pass	
Chromium (filtered)	M18-Ma03965	NCP	%	97	70-130	Pass	
Copper (filtered)	M18-Ma03965	NCP	%	92	70-130	Pass	
Lead (filtered)	M18-Ma03965	NCP	%	100	70-130	Pass	
Mercury (filtered)	P18-Ma01481	NCP	%	81	70-130	Pass	
Nickel (filtered)	M18-Ma03965	NCP	%	96	70-130	Pass	
Zinc (filtered)	M18-Ma03965	NCP	%	96	70-130	Pass	
Spike - % Recovery							
				Result 1			
Ammonia (as N)	B18-Ma02448	СР	%	Result 1	70-130	Pass	
•	B18-Ma02448 B18-Ma02448	CP CP	%	1	70-130 70-130	Pass Pass	
Ammonia (as N)				101			
Ammonia (as N) Nitrite (as N)	B18-Ma02448			101			
Ammonia (as N) Nitrite (as N) Spike - % Recovery	B18-Ma02448			101 106			
Ammonia (as N) Nitrite (as N) Spike - % Recovery Polycyclic Aromatic Hydrocarbons	B18-Ma02448	СР	%	101 106 Result 1	70-130	Pass	
Ammonia (as N) Nitrite (as N) Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene	B18-Ma02448 B18-Ma02451	CP CP	%	101 106 Result 1 78	70-130 70-130	Pass	
Ammonia (as N) Nitrite (as N) Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	B18-Ma02448 B18-Ma02451 B18-Ma02451	CP CP CP	% % %	101 106 Result 1 78 90	70-130 70-130 70-130	Pass Pass Pass	
Ammonia (as N) Nitrite (as N) Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	B18-Ma02448 B18-Ma02451 B18-Ma02451 B18-Ma02451	CP CP CP	% % %	101 106 Result 1 78 90 84	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(g.h.i)perylene	B18-Ma02451	CP	%	72			70-130	Pass	
Benzo(k)fluoranthene	B18-Ma02451	CP	%	119			70-130	Pass	
Chrysene	B18-Ma02451	CP	%	86			70-130	Pass	
Dibenz(a.h)anthracene	B18-Ma02451	CP	%	100			70-130	Pass	
Fluoranthene	B18-Ma02451	CP	%	98			70-130	Pass	
Fluorene	B18-Ma02451	CP	%	74			70-130	Pass	
Indeno(1.2.3-cd)pyrene	B18-Ma02451	CP	%	92			70-130	Pass	
Naphthalene	B18-Ma02451	CP	%	112			70-130	Pass	
Phenanthrene	B18-Ma02451	CP	%	82			70-130	Pass	
Pyrene	B18-Ma02451	CP	%	100			70-130	Pass	
Spike - % Recovery									
				Result 1					
Ammonia (as N)	B18-Ma02451	CP	%	95			70-130	Pass	
Nitrate & Nitrite (as N)	B18-Ma02451	CP	%	94			70-130	Pass	
Nitrate (as N)	B18-Ma02451	CP	%	93			70-130	Pass	
Nitrite (as N)	B18-Ma02451	CP	%	120			70-130	Pass	
Phosphate total (as P)	B18-Ma02451	CP	%	85			70-130	Pass	
Spike - % Recovery									
				Result 1					
Phosphorus reactive (as P)	B18-Ma02453	CP	%	89			70-130	Pass	
Spike - % Recovery									
				Result 1					
Phosphorus reactive (as P)	B18-Ma02463	CP	%	90			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbo	ons			Result 1					
Acenaphthene	B18-Ma02467	CP	%	77			70-130	Pass	
Acenaphthylene	B18-Ma02467	CP	%	83			70-130	Pass	
Anthracene	B18-Ma02467	CP	%	85			70-130	Pass	
Benz(a)anthracene	B18-Ma02467	CP	%	86			70-130	Pass	
Benzo(a)pyrene	B18-Ma02467	CP	%	78			70-130	Pass	
Benzo(b&j)fluoranthene	B18-Ma02467	CP	%	75			70-130	Pass	
Benzo(g.h.i)perylene	B18-Ma02467	CP	%	86			70-130	Pass	
Benzo(k)fluoranthene	B18-Ma02467	CP	%	78			70-130	Pass	
Chrysene	B18-Ma02467	CP	%	85			70-130	Pass	
Dibenz(a.h)anthracene	B18-Ma02467	CP	%	82			70-130	Pass	
Fluoranthene	B18-Ma02467	CP	%	106			70-130	Pass	
Fluorene	B18-Ma02467	CP	%	78			70-130	Pass	
Indeno(1.2.3-cd)pyrene	B18-Ma02467	CP	%	77			70-130	Pass	
Naphthalene	B18-Ma02467	CP	%	90			70-130	Pass	
Phenanthrene	B18-Ma02467	CP	%	83			70-130	Pass	
Pyrene	B18-Ma02467	CP	%	104			70-130	Pass	
Spike - % Recovery									
				Result 1					
Ammonia (as N)	B18-Ma02468	CP	%	110			70-130	Pass	
Nitrate & Nitrite (as N)	B18-Ma02468	CP	%	82			70-130	Pass	
Nitrate (as N)	B18-Ma02468	CP	%	82			70-130	Pass	
Nitrite (as N)	B18-Ma02468	CP	%	119			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	'								
				Result 1	Result 2	RPD			
Conductivity (at 25°C)	B18-Ma02442	CP	uS/cm	760	760	<1	30%	Pass	
pH (at 25°C)	B18-Ma02442	СР	pH Units	8.0	8.0	pass	30%	Pass	

Dan Park									
Duplicate				D: ".	D. ,, ,	DDC			
Heavy Metals				Result 1	Result 2	RPD	000/	_	
Arsenic (filtered)	M18-Ma04999	NCP	mg/L	0.066	0.066	1.0	30%	Pass	
Cadmium (filtered)	M18-Ma04999	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M18-Ma04999	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M18-Ma04999	NCP	mg/L	0.046	0.046	<1	30%	Pass	
Lead (filtered)	M18-Ma04999	NCP	mg/L	0.003	0.003	1.0	30%	Pass	
Mercury (filtered)	M18-Ma04999	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M18-Ma04999	NCP	mg/L	0.016	0.016	2.0	30%	Pass	
Zinc (filtered)	M18-Ma04999	NCP	mg/L	0.11	0.11	<1	30%	Pass	
Duplicate									
	T =			Result 1	Result 2	RPD		<u> </u>	
Dissolved Oxygen (% Saturation)	B18-Ma02447	CP	%	93	93	<1	30%	Pass	
Duplicate									
	1		1	Result 1	Result 2	RPD			
Ammonia (as N)	B18-Ma02448	CP	mg/L	0.03	0.03	6.0	30%	Pass	
Duplicate					1				
	1	i		Result 1	Result 2	RPD			
Dissolved Oxygen	B18-Ma02449	CP	mg/L	6.9	7.1	2.0	30%	Pass	
Duplicate					, ,				
Polycyclic Aromatic Hydrocarbons		1		Result 1	Result 2	RPD			
Acenaphthene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	B18-Ma02450	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	B18-Ma02451	CP	mg/L	0.02	0.02	12	30%	Pass	<u> </u>
Conductivity (at 25°C)	B18-Ma02451	CP	uS/cm	340	350	2.0	30%	Pass	
Nitrate & Nitrite (as N)	B18-Ma02451	СР	mg/L	0.19	0.20	7.0	30%	Pass	
Nitrate (as N)	B18-Ma02451	CP	mg/L	0.16	0.18	11	30%	Pass	
Nitrite (as N)	B18-Ma02451	СР	mg/L	0.03	0.03	17	30%	Pass	
pH (at 25°C)	B18-Ma02451	CP	pH Units	8.3	8.3	pass	30%	Pass	
Turbidity	B18-Ma02451	CP	NTU	8.4	8.0	4.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Phosphorus reactive (as P)	B18-Ma02453	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate			<u> </u>						
•				Result 1	Result 2	RPD			
Dissolved Oxygen (% Saturation)	B18-Ma02457	СР	%	87	88	1.0	30%	Pass	
Suspended Solids	B18-Ma02457	CP	mg/L	7.7	9.3	20	30%	Pass	
Duplicate		<u> </u>	y, =		, 0.0		. 5576	, . 456	
				Result 1	Result 2	RPD			
				, i woull I	I WOULL Z	1111			

D Parata									
Duplicate				D 15.4	D # 0	DDD			
0 1 (1 1 0500)	D40.14.00404	0.0	0/	Result 1	Result 2	RPD	000/	+	
Conductivity (at 25°C)	B18-Ma02461	CP	uS/cm	180	180	1.0	30%	Pass	
pH (at 25°C)	B18-Ma02461	CP	pH Units	7.3	7.4	pass	30%	Pass	
Turbidity	B18-Ma02461	СР	NTU	97	96	<1	30%	Pass	
Duplicate				D 11.4	I D	DDD		T	
Discouries and the second	D40 M-00400	OD		Result 1	Result 2	RPD	000/	D	
Phosphorus reactive (as P)	B18-Ma02463	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate Control of the land				D 15.4	D # 0	DDD			
Polycyclic Aromatic Hydrocarbon		OD		Result 1	Result 2	RPD	000/	D	
Acenaphthene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	B18-Ma02466	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate							1		
		1	_	Result 1	Result 2	RPD			
Dissolved Oxygen (% Saturation)	B18-Ma02467	CP	%	65	67	3.0	30%	Pass	
Duplicate							1		
			1	Result 1	Result 2	RPD			
Ammonia (as N)	B18-Ma02468	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Nitrate & Nitrite (as N)	B18-Ma02468	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Nitrate (as N)	B18-Ma02468	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Nitrite (as N)	B18-Ma02468	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate							T		
		1	1	Result 1	Result 2	RPD			
Dissolved Oxygen	B18-Ma02470	CP	mg/L	4.6	4.4	3.0	30%	Pass	
Duplicate									
	1	1		Result 1	Result 2	RPD		+	
Phosphate total (as P)	B18-Ma02473	CP	mg/L	0.09	0.09	3.0	30%	Pass	
Total Kjeldahl Nitrogen (as N)	B18-Ma02473	CP	mg/L	1.2	1.5	22	30%	Pass	
Turbidity	B18-Ma02473	CP	NTU	210	210	1.0	30%	Pass	
Duplicate									
		1	,	Result 1	Result 2	RPD			
Conductivity (at 25°C)	B18-Ma02475	CP	uS/cm	950	960	1.0	30%	Pass	
pH (at 25°C)	B18-Ma02475	CP	pH Units	8.6	8.6	pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chlorophyll a	B18-Ma02476	CP	ug/L	< 5	< 5	<1	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Comments

Qualifier Codes/Comments

Code Description

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Ryan Gilbert Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Jonathon Angell Senior Analyst-Inorganic (QLD)
Joseph Edouard Senior Analyst-Organic (VIC)
Michael Brancati Senior Analyst-Inorganic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins, Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential claimages including, but not limited to, lost profits, damages for refailure to meet deadlines and lost production arising from this report. This document shall be reported used except in full and retales only to the tiens tested. Unless indicated otherwise, the tests were performed on the performance of the strength of the performance of the perform

Report Number: 587469-W

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Aurecon Australia (BRIS) Pty Ltd Level 14, 32 Turbot St Brisbane QLD 4001

Attention: LEESA LEATHBRIDGE

Report 588540-W

Project name BASELINE SURFACE WATER MONITORING

Project ID INLAND RAIL PROJECT

Received Date Mar 07, 2018

Client Sample ID			H2C 3A	H2C 4A	H2C 7A	H2C 9A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M18-Ma09925	M18-Ma09926	M18-Ma09927	M18-Ma09928
Date Sampled			Mar 06, 2018	Mar 06, 2018	Mar 06, 2018	Mar 06, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	LOIK	Offic				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	84	119	57	106
p-Terphenyl-d14 (surr.)	1	%	148	81	60	104
	•	•				
Ammonia (as N)	0.01	mg/L	0.08	0.01	0.04	0.22
Chlorophyll a	5	ug/L	77	110	92	110
Conductivity (at 25°C)	1	uS/cm	590	350	280	1800
Dissolved Oxygen	0.01	mg/L	8.5	8.5	7.0	4.6
Dissolved Oxygen (% Saturation)		%	95	93	78	50
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	0.06	< 0.05	< 0.05
Nitrate (as N)	0.02	mg/L	< 0.02	0.04	< 0.02	< 0.02
Nitrite (as N)	0.02	mg/L	0.02	< 0.02	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	0.21	< 0.2	0.60	0.39
pH (at 25°C)	0.1	pH Units	8.3	8.4	7.4	7.4
Phosphate total (as P)	0.05	mg/L	0.50	0.39	0.81	0.46
Phosphorus reactive (as P)	0.05	mg/L	0.43	0.22	0.44	< 0.05
Salinity (determined from EC)*	20	mg/L	290	170	140	910
Suspended Solids	1	mg/L	18	23	15	94
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.3	< 0.2	0.6	0.6

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			H2C 3A Water M18-Ma09925 Mar 06, 2018	H2C 4A Water M18-Ma09926 Mar 06, 2018	H2C 7A Water M18-Ma09927 Mar 06, 2018	H2C 9A Water M18-Ma09928 Mar 06, 2018
Test/Reference	LOR	Unit				
Total Nitrogen (as N) Turbidity Heavy Metals	0.2	mg/L NTU	0.29 8.2	< 0.2	0.63 6.1	0.61 58
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	0.002	0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.002	0.002	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.002	0.001	0.004	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005

Client Sample ID			H2C 10A	H2C 12A	H2C 18A	H2C DUP1
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M18-Ma09929	M18-Ma09930	M18-Ma09931	M18-Ma09932
Date Sampled			Mar 06, 2018	Mar 06, 2018	Mar 06, 2018	Mar 06, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	82	111	72	96
p-Terphenyl-d14 (surr.)	1	%	81	133	82	120
Ammonia (as N)	0.01	mg/L	0.05	0.43	0.05	0.05
Chlorophyll a	5	ug/L	220	83	< 10	87
Conductivity (at 25°C)	1	uS/cm	230	430	1400	640
Dissolved Oxygen	0.01	mg/L	5.2	7.5	6.5	9.0
Dissolved Oxygen (% Saturation)		%	57	82	71	97
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	0.18	< 0.05	< 0.05
Nitrate (as N)	0.02	mg/L	< 0.02	0.09	< 0.02	0.02
Nitrite (as N)	0.02	mg/L	< 0.02	0.09	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	0.60	0.44	0.56	< 0.2
pH (at 25°C)	0.1	pH Units	7.2	8.4	7.7	8.4

Client Sample ID Sample Matrix			H2C 10A Water	H2C 12A Water	H2C 18A Water	H2C DUP1 Water
Eurofins mgt Sample No.			M18-Ma09929	M18-Ma09930	M18-Ma09931	M18-Ma09932
Date Sampled			Mar 06, 2018	Mar 06, 2018	Mar 06, 2018	Mar 06, 2018
Test/Reference	LOR	Unit				
Phosphate total (as P)	0.05	mg/L	0.41	0.71	0.20	0.53
Phosphorus reactive (as P)	0.05	mg/L	0.15	0.58	< 0.05	0.43
Salinity (determined from EC)*	20	mg/L	110	210	700	310
Suspended Solids	1	mg/L	33	16	6.2	16
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.6	0.9	0.6	< 0.2
Total Nitrogen (as N)	0.2	mg/L	0.64	1.1	0.62	< 0.2
Turbidity	1	NTU	49	4.3	3.9	7.6
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.006	0.001	0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.005	0.001	< 0.001	0.002
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.003	0.002	< 0.001	0.002
Zinc (filtered)	0.005	mg/L	0.007	< 0.005	< 0.005	< 0.005

Client Sample ID Sample Matrix			H2C TRIP1 Water
Eurofins mgt Sample No.			M18-Ma09933
Date Sampled			Mar 06, 2018
Test/Reference	LOR	Unit	Wild 00, 2010
Polycyclic Aromatic Hydrocarbons	LOR	Ullit	
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	91
p-Terphenyl-d14 (surr.)	1	%	110
	,		
Ammonia (as N)	0.01	mg/L	0.03
Chlorophyll a	5	ug/L	91
Conductivity (at 25°C)	1	uS/cm	580
Dissolved Oxygen	0.01	mg/L	9.1
Dissolved Oxygen (% Saturation)		%	99

Client Sample ID			H2C TRIP1
Sample Matrix			Water
Eurofins mgt Sample No.			M18-Ma09933
Date Sampled			Mar 06, 2018
Test/Reference	LC	R Unit	
		,	
Nitrate & Nitrite (as N)	0.0)5 mg/L	< 0.05
Nitrate (as N)	0.0)2 mg/L	< 0.02
Nitrite (as N)	0.0)2 mg/L	< 0.02
Organic Nitrogen (as N)	0.	2 mg/L	< 0.2
pH (at 25°C)	0.	1 pH Units	8.5
Phosphate total (as P)	0.0)5 mg/L	0.56
Phosphorus reactive (as P)	0.0)5 mg/L	0.43
Salinity (determined from EC)*	2	0 mg/L	280
Suspended Solids	1	mg/L	15
Total Kjeldahl Nitrogen (as N)	0.	2 mg/L	0.2
Total Nitrogen (as N)	0.	2 mg/L	< 0.2
Turbidity	1	NTU	7.9
Heavy Metals			
Arsenic (filtered)	0.0	01 mg/L	< 0.001
Cadmium (filtered)	0.00	002 mg/L	< 0.0002
Chromium (filtered)	0.0	01 mg/L	< 0.001
Copper (filtered)	0.0	01 mg/L	0.002
Lead (filtered)	0.0	01 mg/L	< 0.001
Mercury (filtered)	0.00	001 mg/L	< 0.0001
Nickel (filtered)	0.0	01 mg/L	0.002
Zinc (filtered)	0.0	05 mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Mar 14, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Water by GCMS			
Chlorophyll a	Melbourne	Mar 16, 2018	2 Day
- Method: APHA Method 10200H			
Conductivity (at 25°C)	Melbourne	Mar 13, 2018	28 Day
- Method: LTM-INO-4030 Conductivity			
Dissolved Oxygen	Melbourne	Mar 08, 2018	1 Day
- Method: LTM-INO-4130 Determination of Dissolved Oxygen using a DO meter			
Dissolved Oxygen (% Saturation)	Melbourne	Mar 09, 2018	1 Day
- Method: LTM-INO-4130 Determination of Dissolved Oxygen using a DO meter			
pH (at 25°C)	Melbourne	Mar 13, 2018	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Phosphate total (as P)	Melbourne	Mar 13, 2018	28 Day
- Method: APHA 4500-P E. Phosphorous			
Phosphorus reactive (as P)	Melbourne	Mar 13, 2018	2 Day
- Method: APHA4500-PO4			
Salinity (determined from EC)*	Melbourne	Mar 13, 2018	0 Day
Suspended Solids	Melbourne	Mar 13, 2018	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Melbourne	Mar 13, 2018	2 Day
- Method: LTM-INO-4140 Turbidity by Nephelometric Method			
Metals M8 filtered	Melbourne	Mar 13, 2018	28 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Nitrogens (speciated)			
Ammonia (as N)	Melbourne	Mar 13, 2018	28 Day
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Nitrate & Nitrite (as N)	Melbourne	Mar 13, 2018	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA			
Nitrate (as N)	Melbourne	Mar 13, 2018	7 Day
- Method: APHA 4500-NO3 Nitrate Nitrogen by FIA			
Nitrite (as N)	Melbourne	Mar 13, 2018	2 Day
- Method: APHA 4500-NO2 Nitrite Nitrogen by FIA			
Organic Nitrogen (as N)	Melbourne	Mar 08, 2018	7 Day
- Method: APHA 4500 Organic Nitrogen (N)			
Total Kjeldahl Nitrogen (as N)	Melbourne	Mar 13, 2018	7 Day
- Method: APHA 4500 TKN			

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271

07 3173 8000

+61 7 3173 8001

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Aurecon Australia (BRIS) Pty Ltd

Address: Level 14, 32 Turbot St

Brisbane QLD 4001

Mar 06, 2018

Mar 06, 2018

Mar 06, 2018

Water

Water

Water

Project Name: BASELINE SURFACE WATER MONITORING

Project ID: INLAND RAIL PROJECT

 Order No.:
 23200
 Received:
 Mar 7, 2018 3:36 PM

 Report #:
 588540
 Due:
 Mar 15, 2018

Priority: 5 Day

Contact Name: LEESA LEATHBRIDGE

Eurofins | mgt Analytical Services Manager : Ryan Gilbert

		Sa	mple Detail			Chlorophyll a	Conductivity (at 25°C)	Dissolved Oxygen	Dissolved Oxygen (% Saturation)	pH (at 25°C)	Phosphate total (as P)	Phosphorus reactive (as P)	Salinity (determined from EC)*	Suspended Solids	Turbidity	Polycyclic Aromatic Hydrocarbons	Metals M8	Metals M8 filtered	Nitrogens (speciated)	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Sydr	ney Laboratory	- NATA Site # 1	8217																	
Brisl	bane Laboratory	y - NATA Site #	20794																	
Pertl	h Laboratory - N	IATA Site # 237	'36																	
Exte	rnal Laboratory																			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	H2C 3A	Mar 06, 2018		Water	M18-Ma09925	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	
2	H2C 4A	Mar 06, 2018		Water	M18-Ma09926	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	
3	H2C 7A	Mar 06, 2018		Water	M18-Ma09927	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	
4	H2C 9A	Mar 06, 2018		Water	M18-Ma09928	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	
5	H2C 10A	Mar 06, 2018		Water	M18-Ma09929	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	
6	H2C 12A	Mar 06, 2018		Water	M18-Ma09930	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	
				1	i		I .		l	1	I .	I				ı		1 1	ı I	

M18-Ma09931

M18-Ma09932

M18-Ma09933

 $x \mid x$

X X

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

Х

Χ

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 588540-W

 $X \mid X$

H2C 18A

H2C DUP1

H2C TRIP1

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

23200

588540

07 3173 8000

+61 7 3173 8001

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Aurecon Australia (BRIS) Pty Ltd

Address: Level 14, 32 Turbot St

Brisbane QLD 4001

Project Name: BASELINE SURFACE WATER MONITORING

Project ID: INLAND RAIL PROJECT

Received: Mar 7, 2018 3:36 PM **Due:** Mar 15, 2018

Priority: 5 Day

Contact Name: LEESA LEATHBRIDGE

Eurofins | mgt Analytical Services Manager : Ryan Gilbert

														1 9 .	,
Sample Detail	Chlorophyll a	Conductivity (at 25°C)	Dissolved Oxygen	Dissolved Oxygen (% Saturation)	pH (at 25°C)	Phosphate total (as P)	Phosphorus reactive (as P)	Salinity (determined from EC)*	Suspended Solids	Turbidity	Polycyclic Aromatic Hydrocarbons	Metals M8	Metals M8 filtered	Nitrogens (speciated)	

				tion))*			bons			
Melbourne Laboratory - NATA Site # 1254 & 14271	Х	Х	Χ	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х
Sydney Laboratory - NATA Site # 18217														
Brisbane Laboratory - NATA Site # 20794														
Perth Laboratory - NATA Site # 23736														
Test Counts	9	9	9	9	9	9	9	9	9	9	9	1	8	9

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram
mg/L: milligrams per litre
ug/L: micrograms per litre
ppm: Parts per million
ppb: Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a drv basis

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 588540-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	•				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	ı mg/L	0.001	0.001	1 466	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Dissolved Oxygen (% Saturation)	%	100	0.01	N/A	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrate (as N)	mg/L	< 0.02	0.03	Pass	
Nitrite (as N)		< 0.02	0.02	Pass	
Phosphate total (as P)	mg/L	< 0.02	0.02	Pass	
Phosphorus reactive (as P)	mg/L	< 0.05	0.05	Pass	
• • • • • • • • • • • • • • • • • • • •	mg/L				
Suspended Solids	mg/L	<1	1	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Turbidity	NTU	<1	1	Pass	
Method Blank		т т		П	
Heavy Metals			0.004	-	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery				T	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	115	70-130	Pass	
Acenaphthylene	%	116	70-130	Pass	
Anthracene	%	104	70-130	Pass	
Benz(a)anthracene	%	99	70-130	Pass	
Benzo(a)pyrene	%	112	70-130	Pass	
Benzo(b&j)fluoranthene	%	108	70-130	Pass	
Benzo(g.h.i)perylene	%	90	70-130	Pass	
Benzo(k)fluoranthene	%	126	70-130	Pass	
Chrysene	%	113	70-130	Pass	
Dibenz(a.h)anthracene	%	73	70-130	Pass	
Fluoranthene	%	106	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Fluorene			%	116		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	83		70-130	Pass	
Naphthalene			%	120		70-130	Pass	
Phenanthrene			%	124		70-130	Pass	
Pyrene			%	125		70-130	Pass	
LCS - % Recovery				T	T T			
Ammonia (as N)			%	74		70-130	Pass	
Nitrate & Nitrite (as N)			%	98		70-130	Pass	
Nitrate (as N)			%	97		70-130	Pass	
Nitrite (as N)			%	83		70-130	Pass	
Phosphate total (as P)			%	97		70-130	Pass	
Phosphorus reactive (as P)			%	116		70-130	Pass	
Suspended Solids			%	115		70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	110		70-130	Pass	
LCS - % Recovery					T T	I		
Heavy Metals		1	61			00.100		
Arsenic (filtered)			%	95		80-120	Pass	
Cadmium (filtered)			%	97		80-120	Pass	
Chromium (filtered)			%	92		80-120	Pass	
Copper (filtered)			%	89		80-120	Pass	
Lead (filtered)			%	104		80-120	Pass	
Mercury (filtered)			%	100		70-130	Pass	
Nickel (filtered)			%	88		80-120	Pass	
Zinc (filtered)			%	94		80-120	Pass	0
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
				Result 1				
Ammonia (as N)	M18-Ma07562	NCP	%	74		70-130	Pass	
Nitrate & Nitrite (as N)	M18-Ma07562	NCP	%	98		70-130	Pass	
Nitrate (as N)	M18-Ma07562	NCP	%	98		70-130	Pass	
Nitrite (as N)	M18-Ma07562	NCP	%	81		70-130	Pass	
Phosphate total (as P)	M18-Ma07542	NCP	%	78		70-130	Pass	
Phosphorus reactive (as P)	P18-Ma09789	NCP	%	118		70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M18-Ma07542	NCP	%	102		70-130	Pass	
Spike - % Recovery				T	T T			
Heavy Metals	1	1		Result 1				
Arsenic (filtered)	M18-Ma10627	NCP	%	98		70-130	Pass	
Cadmium (filtered)	M18-Ma10627	NCP	%	91		70-130	Pass	
Chromium (filtered)	M18-Ma10627	NCP	%	91		70-130	Pass	
Copper (filtered)	M18-Ma10627	NCP	%	86		70-130	Pass	
Lead (filtered)	M18-Ma10627	NCP	%	98		70-130	Pass	
Mercury (filtered)	M18-Ma10449	NCP	%	72		70-130	Pass	
Nickel (filtered)	M18-Ma10627	NCP	%	86		70-130	Pass	
Zinc (filtered)	M18-Ma10627	NCP	%	89		70-130	Pass	
Spike - % Recovery	-			Darit 4				
Polycyclic Aromatic Hydrocarbon	1	00	0/	Result 1		70.400	D	
Acenaphthylone	M18-Ma09930	CP CP	%	82		70-130	Pass	
Acenaphthylene	M18-Ma09930	CP	%	89		70-130	Pass	
Anthracene Renz/(a)enthracene	M18-Ma09930		%	90		70-130	Pass	
Benz(a)anthracene	M18-Ma09930	CP CP	%	71		70-130	Pass	
Benzo(a)pyrene	M18-Ma09930	CP	%	82		70-130	Pass	
Benzo(b&j)fluoranthene	M18-Ma09930		%	89		70-130	Pass	
Benzo(g.h.i)perylene Benzo(k)fluoranthene	M18-Ma09930 M18-Ma09930	CP CP	%	73 105		70-130	Pass Pass	
Denzo(k)iiuoraniilelle	INITO-INIAUSSSU	UF	/0	100		70-130	F d 5 5	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chrysene	M18-Ma09930	CP	%	97			70-130	Pass	
Dibenz(a.h)anthracene	M18-Ma09930	CP	%	72			70-130	Pass	
Fluoranthene	M18-Ma09930	CP	%	112			70-130	Pass	
Fluorene	M18-Ma09930	CP	%	88			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-Ma09930	СР	%	71			70-130	Pass	
Naphthalene	M18-Ma09930	CP	%	94			70-130	Pass	
Phenanthrene	M18-Ma09930	CP	%	88			70-130	Pass	
Pyrene	M18-Ma09930	CP	%	98			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				D 11.4	l	DDD	T		
Polycyclic Aromatic Hydrocarbon		NOD		Result 1	Result 2	RPD	000/	-	
Acenaphthene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	M18-Ma10515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate				ı			_		
	1 1110 11 10110	Non		Result 1	Result 2	RPD	000/		
Ammonia (as N)	M18-Ma10449	NCP	mg/L	0.54	0.52	3.0	30%	Pass	
Chlorophyll a	M18-Ma16227	NCP	ug/L	< 5	< 5	<1	30%	Pass	
Dissolved Oxygen	B18-Ma07531	NCP	mg/L	8.2	8.1	1.0	30%	Pass	
Nitrate & Nitrite (as N)	M18-Ma10449	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Nitrate (as N)	M18-Ma10449	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Nitrite (as N)	M18-Ma10449	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phosphate total (as P)	M18-Ma09925	CP	mg/L	0.50	0.56	10	30%	Pass	
Phosphorus reactive (as P)	P18-Ma09826	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M18-Ma09925	CP	mg/L	0.3	0.2	17	30%	Pass	
Turbidity	S18-Ma09590	NCP	NTU	63	64	2.0	30%	Pass	
Duplicate							T		
Heavy Metals	M49 Me40627	NCD	ma/l	Result 1	Result 2	RPD	200/	Door	
Arsenic (filtered)	M18-Ma10627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	M18-Ma10627	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M18-Ma10627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M18-Ma10627	NCP	mg/L	0.011	0.011	5.0	30%	Pass	
Lead (filtered)	M18-Ma10627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	M18-Ma10627	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M18-Ma10627	NCP	mg/L	0.001	0.001	15	30%	Pass	
Zinc (filtered)	M18-Ma10627	NCP	mg/L	0.010	0.009	4.0	30%	Pass	
Duplicate							1		
				De14 4	Descrite				
Conductivity (at 25°C)	M18-Ma09927	СР	uS/cm	Result 1 280	Result 2 280	1.0	30%	Pass	

Duplicate											
				Result 1	Result 2	RPD					
Dissolved Oxygen (% Saturation)	M18-Ma09929	CP	%	57	54	5.0	30%	Pass			
Suspended Solids	M18-Ma09929	CP	mg/L	33	30	9.0	30%	Pass			
Duplicate											
				Result 1	Result 2	RPD					
Suspended Solids	M18-Ma09931	CP	mg/L	6.2	7.2	15	30%	Pass			

Report Number: 588540-W

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Ryan Gilbert Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Joseph Edouard Senior Analyst-Organic (VIC)
Michael Brancati Senior Analyst-Inorganic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, in no case shall Eurofins; Imgl be liable for consequential clamages including, but not limited to, lost profits, damages for refaultive to meet decidines and lost production arising from this report. This document shall be reported.

Appendix V5 Surface water quality results—Round 3 (Mar 2019)

HELIDON TO CALVERT ENVIRONMENTAL IMPACT STATEMENT

Eurofins | mgt

F3 Building F, 16 Mars Road, Lane Cove West, NSW 2066 P: +61 2 9900 8400 E : EnviroSampleNSW@eurofins.com.eu

Eurofins | mgt | 2 Kingston Tevan Close, Caeldeigh, VIC 3166 | P1-4513 8564 5000 | P1-4613 6564 5090 | P2-613 8564 5090 | P3-613 8564 5090 | P3-61

Company	Aurecon		Purcha	se Order	232	00					Project	Manager	Sha	ınnah B	rown			F	roject	t Name		Bas	eline	Surface Wa	ıter Moı	nitoring	
Address	Level 14, 32 Turbot Street	Brishana OLD		ns∣mgt teNº	160	329AUR					Proje	act Na	Inla	ınd Rail	Project			Ele	ctronic For	c Resu mat	its						
Contact Name	James Bone	, bilaballe, QLD	"Filbred")				organic nitrogen, oxidised otal nitrogen)											En	nail for	r Resul	ts			ne@aureco singh@aur			n
Contact Phone №	james.bone@aurecongrou	up.com	ectity "Total" or				organic nitr ital nitroger	nd specific)			_		ons (PAH)		ation)	Ġ				round] 1 DA		□ 2 DA		3 DA	AY*
Special Direction	#3 eskies in total		Analysis ested, please sp	됩	Suspended Solids (SS)	Turbidity	ate, nitrite, on nitrogen, to	/ (Actual ar	M8 - 8 metals	Fotal Phosphorus	Reactive Phosphorus	Chlorophyll a	hydrocarbo	Salinity (ppt)	en (% satur	kygen (mg/			oquilo		Contain		Y (Std.)	Othe		of Shipment)
Relinquished by (Signature) (Time / Date)	En 1	3,3,19	(Note: Where metals are right	u	Suppredence	Tur	Speciated nitrogens (ammonia, nitrate, nitrite, organic nitrog nitrogen, totai hitrogen, totai nitrogen;	Electrical conductivity (Actual and specific)	M8 - 8	Total Ph	Reactive	Chlor	Polycyclic aromatic hydrocarbons (PAH)	Salini	Dissolved oxygen (% saturation)	Dissolved oxygen (mg/L)		1L Plastic	250ml. Plastic	125mL Plastic	200mL Amber Glass	125mi. Amber Glass	期	Coul	d Delivered)
No.	Client Sample ID	Date	Matrix				Speciated														200	125				/ DG Hazar	d Warning
1 G2H1	A	11/3/19	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2			1			2			
2 G2H	2A	11/3/19	W	X	X	×	X	X	X	X	X	X	X	X	X	X		2			1			2			
3 a2H	3A	11319	W	X	X	×	X	X	X	X	X	X	X	X	X	×		2			1			2			
4 C12H	9A	11319	W	X	X	X	X	X	X	X	X	X	X	X	X	×		2			1			2			
5 C2H	Diplicate 1	11/3/19	W	X	X	X	X	X	X	X	X	X	X	X	X	×		2			1			2			
· Hac		12/3/9	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2			1			2			
	Duplicate 2	12/3/19	W	×	X	×	X	X	X	X	X	X	×	X	X	X		2			1	Jii		2			
8 HQC.		12/3/19	W	X	X	×	X	X	X	X	X	X	X	X	X	×		2			1			2			
· 42C	ISA	123/19	W	X	X	×	X	X	X	X	X	X	X	X	X	×		2			1			2			
10 C2K	SA	3319	W	X	X	×	X	X	X	X	X	X	X	X	X	×		2			1			2			
11 C2K	6A	13 3 19	W	×	X	×	X	X	X	X	×	X	X	X	X	X		2			1			2			
12 C2K	13A	13/3/19	W	×	×	X	×	X	×	X	×	×	×	×	×	X		2		4	1			2			
Laboratory Use On		1_1_	>				ADL NE\	_	Da	ate ate		5,19		me me		1729	Signature Signature	7	7					-	erature ort №	22.	
	Received By			ם ו חופ	ME I WEL	FER	ADL NEV	3 DAK	Da	ALC.	/_	_'	111	1116		·	Signature							repo	17 142	645	13 3

Eurofins | mgt

Unit F3 Building F, 16 Mars Road, Lane Cove West, NSW 2086 P: +81 2 9900 8400 E : EnviroSampleNSW@eurofins.com.au

Eurofins | mgt
Brisbane Lab

Linit 1, 21 Smallwood Place, Murarrie, QLD 4172
P1:4617 3:902 4:600
E: EmwiroSempleQLD@aurolins.com.au E : EnviroSampleQLD@eurolins.com.au

Eurofins | mgt | 2 Kingston Town Close, Oakleign, VIC 3166 | F1 + 61 3 8544 5000 | F1 +

	Company	Aurecon			Purch	ase Order	23	200					Projec	t Manager	Sh	annah E	Brown				Proje	ct Nam	e	В	aselir	ne Su	rface Water N	onitoring	
	Address	Level 14, 32 T	urbot Street	t, Brisbane, QLD	0	fins mgt iote №	16	0329AU					Pro	oject Na	Inia	and Rail	l Projec	t		E		ic Res mat	ults						
	Contact Name ontact Phone №	James Bone james.bone@			specity Total or Filtmen")		(5:		, organic nitrogen, oxidised total nitrogen)	and specific)			v		ons (PAH)		ration)	(L)			Tum /	Around		gabriella.sin				up.com group.com 3 DAY* *Surcharges	
S	pecial Direction	# <u>S</u> eskies	in total		Analysis quested, please	표	Suspended Solids (SS)	Turbidity	rate, nitrite I nitrogen,	ty (Actual	M8 - 8 metals	Total Phosphorus	Reactive Phosphorus	Chlorophyil a	hydrocarb	Salinity (ppt)	en (% satu	xygen (mg			Toqui		Conta		DAY (S	Std.)	Other (d of Shipment	}
	(Signature)	5.29) P	2/3/19	(Note: Where metals are red		epuedsnS	Tu	Speciated nitrogens (ammonia, nitrate, nitrite, nitrite, nitrite, nitrogen, to secondaria nitrite, nit	Electrical conductivity (Actual and specific)	M8 - 8	Total Pr	Reactive	Chlor	Polycyclic aromalic hydrocarbons (PAH)	Salini	Dissolved oxygen (% saturation)	Dissolved oxygen (mg/L)		1L Plastic	250mL Plastic		plage		125mL Amber Glasss	plastic	Courier (#		}
No		Client Sample ID		Date	Matrix																						Sample Commer	ts / DG Hazard W	/aming
1	Cak			143/19	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2			1			2	:		
2	Car	duplicat	23	13319	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2			1			2			
3		:#		1 -1 -	W	X	X	X	X	X	X	X	X	X	X	X	X	X		2			1		T	2			
4					W	X	X	X	X	X	X	X	X	X	X	X	X	X		2			1			2			
5					W	X	X	X	X	X	X	X	X	X	X	X	X	X		2			1	T		2			
6					W	X	X	X	X	X	X	X	X	X	X	×	×	X		2			1	+		2			
7					W	X	X	X	X	X	×	×	×	×	X	×	×	X		2			1			2			
8					W	X	X	×	X	X	×	×	×	×	X	X	X	X		2			1	+		2			
9					W	X	X	X	X	X	×	X	×	X	X	X	X	X		2		+	1	+	+	2			
10					W	×	×	×	×	X	X	X	X	X	X	X	X	×		2		+	1	+	+	2			
11					W				X	_				X						+			4	+	+	H			
12:					W				X			_						×		2	-	+	1			2		î.	
		Received By	7	100 April 1					ADL NEV		Da	_		_	X		X 17	X		2			1			2		- 01	_
Lai	ooratory Use Only		<i>D</i>			_			ADL NEV		Da		1319		Tin		-		Signature Signature	d						-	Temperature Report №	22.2	
QS3	009, R4 Modified by: S. Koji	ima Approved by: T. Lokeland Ap	proved on: 11 August 20	15					Submi	ssion of sa	mples to the	laboratory			ptance of E	urofins m	gt Standard	Terms and	Conditions unless a	greed oth	erwise	. A cop	y of Eu	urofins	mgt St	andard	Terms and Condition	s is available on re	quest.

Aurecon Australia (BRIS) Pty Ltd Level 14, 32 Turbot St Brisbane QLD 4001

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: James Bone

Report 645158-W

Project name BASELINE SURFACE WATER MONITORING

Project ID INLAND RAIL PROJECT

Received Date Mar 13, 2019

Client Sample ID			G2H1A	G2H 2A	G2H 3A	G2H 9A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B19-Ma15933	B19-Ma15934	B19-Ma15935	B19-Ma15936
Date Sampled			Mar 11, 2019	Mar 11, 2019	Mar 11, 2019	Mar 11, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		-				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	50	65	64	52
p-Terphenyl-d14 (surr.)	1	%	123	62	65	54
Ammonia (as N)	0.01	mg/L	< 0.01	< 0.01	< 0.01	0.04
Chlorophyll a	5	ug/L	< 5	< 5	< 5	7.5
Conductivity (at 25°C)	1	uS/cm	920	440	380	1800
Dissolved Oxygen	0.01	mg/L	9.1	9.2	9.0	9.0
Nitrate & Nitrite (as N)	0.05	mg/L	2.1	0.71	1.1	< 0.05
Nitrate (as N)	0.02	mg/L	2.1	0.70	1.0	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	1.1	< 0.2	1.2	0.42
pH (at 25°C)	0.1	pH Units	8.3	8.5	8.3	8.4
Phosphate total (as P)	0.01	mg/L	0.12	0.04	0.06	0.01
Phosphorus reactive (as P)	0.01	mg/L	0.10	0.02	0.03	0.01
Salinity (determined from EC)*	20	mg/L	450	210	180	930
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.1	< 0.2	1.2	0.5
Total Nitrogen (as N)	0.2	mg/L	3.2	0.71	1.3	0.46
Total Suspended Solids Dried at 103–105°C	1	mg/L	13	3.8	4.9	13
Turbidity	1	NTU	2.5	1.8	2.1	7.1

Client Sample ID Sample Matrix			G2H1A Water	G2H 2A Water	G2H 3A Water	G2H 9A Water
Eurofins mgt Sample No.			B19-Ma15933	B19-Ma15934	B19-Ma15935	B19-Ma15936
Date Sampled			Mar 11, 2019	Mar 11, 2019	Mar 11, 2019	Mar 11, 2019
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	0.001	0.001	< 0.001
Zinc (filtered)	0.005	mg/L	0.025	< 0.005	< 0.005	< 0.005

Client Sample ID			G2H DUPLICATE 1	H2C 4A	H2C DUPLICATE 2	H2C 3A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B19-Ma15937	B19-Ma15938	B19-Ma15939	B19-Ma15940
Date Sampled			Mar 11, 2019	Mar 12, 2019	Mar 12, 2019	Mar 12, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·	•				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	56	54	59	112
p-Terphenyl-d14 (surr.)	1	%	53	51	56	108
Ammonia (as N)	0.01	mg/L	0.06	< 0.01	< 0.01	0.18
Chlorophyll a	5	ug/L	7.5	6.4	21	< 5
Conductivity (at 25°C)	1	uS/cm	1700	480	490	710
Dissolved Oxygen	0.01	mg/L	9.0	9.0	9.0	9.0
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Nitrate (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	0.35	0.67	0.71	0.70
pH (at 25°C)	0.1	pH Units	8.4	8.7	8.7	9.1
Phosphate total (as P)	0.01	mg/L	< 0.01	0.10	0.06	0.06
Phosphorus reactive (as P)	0.01	mg/L	0.01	0.01	0.03	0.05
Salinity (determined from EC)*	20	mg/L	880	230	240	340

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			G2H DUPLICATE 1 Water B19-Ma15937 Mar 11, 2019	H2C 4A Water B19-Ma15938 Mar 12, 2019	H2C DUPLICATE 2 Water B19-Ma15939 Mar 12, 2019	H2C 3A Water B19-Ma15940 Mar 12, 2019
Test/Reference	LOR	Unit				
	Ι	Г				
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.4	0.7	0.7	0.9
Total Nitrogen (as N)	0.2	mg/L	0.41	0.67	0.71	0.88
Total Suspended Solids Dried at 103–105°C	1	mg/L	12	67	49	11
Turbidity	1	NTU	6.6	42	24	2.9
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.002	< 0.001	< 0.001	0.002
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	0.002	0.002	0.001
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	0.005

Client Sample ID			H2C 18A	C2K 5A	C2K 6A	C2K 13A
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			B19-Ma15941	B19-Ma15942	B19-Ma15943	B19-Ma15944
Date Sampled			Mar 12, 2019	Mar 13, 2019	Mar 13, 2019	Mar 13, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluorantheneN07	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	71	53	51	67
p-Terphenyl-d14 (surr.)	1	%	74	50	57	79
Ammonia (as N)	0.01	mg/L	0.20	< 0.01	0.67	< 0.01
Chlorophyll a	5	ug/L	18	32	< 5	20
Conductivity (at 25°C)	1	uS/cm	3000	380	3400	2000
Dissolved Oxygen	0.01	mg/L	8.7	9.1	8.5	8.9
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05	0.06	< 0.05
Nitrate (as N)	0.02	mg/L	< 0.02	< 0.02	0.06	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	H2C 18A Water B19-Ma15941 Mar 12, 2019	C2K 5A Water B19-Ma15942 Mar 13, 2019	C2K 6A Water B19-Ma15943 Mar 13, 2019	C2K 13A Water B19-Ma15944 Mar 13, 2019
Organic Nitrogen (as N)	0.2	mg/L	1.3	1.6	1.2	0.59
pH (at 25°C)	0.1	pH Units	6.3	9.1	8.3	8.4
Phosphate total (as P)	0.01	mg/L	0.01	0.01	0.02	0.01
Phosphorus reactive (as P)	0.01	mg/L	0.01	0.01	0.01	0.01
Salinity (determined from EC)*	20	mg/L	1600	180	1800	1000
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.3	1.6	1.9	0.6
Total Nitrogen (as N)	0.2	mg/L	1.3	1.6	1.9	0.59
Total Suspended Solids Dried at 103–105°C	1	mg/L	21	36	42	24
Turbidity	1	NTU	18	21	34	9.7
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.002	0.002	0.001	0.006
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.004	< 0.001	0.003	0.002
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005

Client Sample ID Sample Matrix			C2K 10A Water	C2K DUPLICATE 3 Water
Eurofins mgt Sample No.			B19-Ma15945	B19-Ma15946
Date Sampled			Mar 13, 2019	Mar 13, 2019
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons	,	1		
Acenaphthene	0.001	mg/L	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	74	79
p-Terphenyl-d14 (surr.)	1	%	78	80

Client Sample ID Sample Matrix			C2K 10A Water	C2K DUPLICATE 3 Water
Eurofins mgt Sample No.			B19-Ma15945	B19-Ma15946
Date Sampled			Mar 13, 2019	Mar 13, 2019
Test/Reference	LOR	Unit		
Ammonia (as N)	0.01	mg/L	< 0.01	< 0.01
Chlorophyll a	5	ug/L	< 5	< 5
Conductivity (at 25°C)	1	uS/cm	2700	2700
Dissolved Oxygen	0.01	mg/L	9.0	9.0
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05
Nitrate (as N)	0.02	mg/L	< 0.02	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02
Organic Nitrogen (as N)	0.2	mg/L	0.29	0.34
pH (at 25°C)	0.1	pH Units	8.2	8.4
Phosphate total (as P)	0.01	mg/L	0.01	< 0.01
Phosphorus reactive (as P)	0.01	mg/L	0.01	0.10
Salinity (determined from EC)*	20	mg/L	1400	1400
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.3	0.3
Total Nitrogen (as N)	0.2	mg/L	0.29	0.34
Total Suspended Solids Dried at 103–105°C	1	mg/L	13	10
Turbidity	1	NTU	7.4	5.2
Heavy Metals				
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005

Report Number: 645158-W

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Polycyclic Aromatic Hydrocarbons	Testing Site Melbourne	Extracted Mar 15, 2019	Holding Time 7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water		,	,
Chlorophyll a	Melbourne	Mar 20, 2019	2 Day
- Method: LTM-INO-4340 Chlorophyll a in Waters		20, 20.0	,
Conductivity (at 25°C)	Melbourne	Mar 18, 2019	28 Day
- Method: LTM-INO-4030 Conductivity		10, 2010	
Dissolved Oxygen	Melbourne	Mar 16, 2019	1 Day
- Method: LTM-INO-4130 Determination of Dissolved Oxygen using a DO meter			,
pH (at 25°C)	Melbourne	Mar 18, 2019	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE		,	
Phosphate total (as P)	Melbourne	Mar 15, 2019	28 Day
- Method: APHA 4500-P E. Phosphorus		,	,
Phosphorus reactive (as P)	Melbourne	Mar 15, 2019	2 Day
- Method: APHA4500-PO4		•	,
Salinity (determined from EC)*	Melbourne	Mar 18, 2019	0 Day
- Method: LTM-INO-4030			·
Total Suspended Solids Dried at 103–105°C	Melbourne	Mar 15, 2019	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			•
Turbidity	Melbourne	Mar 20, 2019	2 Day
- Method: Turbidity by classical using APHA 2130B (LTM-INO-4140)			
Metals M8 filtered	Brisbane	Mar 14, 2019	28 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Nitrogens (speciated)			
Ammonia (as N)	Melbourne	Mar 15, 2019	28 Day
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Nitrate & Nitrite (as N)	Melbourne	Mar 15, 2019	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA			
Nitrate (as N)	Melbourne	Mar 15, 2019	28 Day
- Method: APHA 4500-NO3 Nitrate Nitrogen by FIA			
Nitrite (as N)	Melbourne	Mar 15, 2019	2 Day
- Method: APHA 4500-NO2 Nitrite Nitrogen by FIA			
Organic Nitrogen (as N)	Melbourne	Mar 13, 2019	7 Day
- Method: APHA 4500 Organic Nitrogen (N)			
Total Kjeldahl Nitrogen (as N)	Melbourne	Mar 15, 2019	7 Day

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

23200

645158

07 3173 8000

+61 7 3173 8001

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Aurecon Australia (BRIS) Pty Ltd

Address: Level 14, 32 Turbot St

Brisbane QLD 4001

Project Name: BASELINE SURFACE WATER MONITORING

Project ID: INLAND RAIL PROJECT

Received: Mar 13, 2019 5:29 PM

Priority:

Due: Mar 20, 2019

Contact Name: James Bone

Eurofins | mgt Analytical Services Manager : Ryan Gilbert

5 Day

		Sa	mple Detail			Chlorophyll a	Conductivity (at 25°C)	Dissolved Oxygen	pH (at 25°C)	Phosphate total (as P)	Phosphorus reactive (as P)	Salinity (determined from EC)*	Total Suspended Solids Dried at 103-105°C	Turbidity	Polycyclic Aromatic Hydrocarbons	Metals M8	Nitrogens (speciated)	
Melk	oourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	
Syd	ney Laboratory	- NATA Site # 1	8217															
Bris	bane Laborator	y - NATA Site#	20794													Х		
Pert	h Laboratory - N	NATA Site # 237	' 36															
Exte	rnal Laboratory	<u>, </u>																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	G2H1A	Mar 11, 2019		Water	B19-Ma15933	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
2	G2H 2A	Mar 11, 2019		Water	B19-Ma15934	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
3	G2H 3A	Mar 11, 2019		Water	B19-Ma15935	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
4	G2H 9A	Mar 11, 2019		Water	B19-Ma15936	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
5	G2H DUPLICATE 1	Mar 11, 2019		Water	B19-Ma15937	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	
6	H2C 4A	Mar 12, 2019		Water	B19-Ma15938	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
7	H2C DUPLICATE 2	Mar 12, 2019		Water	B19-Ma15939	Х	Х	х	х	х	Х	Х	х	Х	Х	х	х	
8	H2C 3A	Mar 12, 2019		Water	B19-Ma15940	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х	X	

Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172

ABN : 50 005 085 521 Telephone: +61 7 3902 4600 Report Number: 645158-W

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Page 8 of 14

Mar 13, 2019 5:29 PM

Eurofins | mgt Analytical Services Manager : Ryan Gilbert

Company Name: Aurecon Australia (BRIS) Pty Ltd Order No.: 23200 Received:

 Brisbane
 Phone:
 07 3173 8000
 Priority:
 5 Day

 QLD 4001
 Fax:
 +61 7 3173 8001
 Contact Name:
 James Bone

QLD 4001 Contact Name: James Bull

Project Name: BASELINE SURFACE WATER MONITORING
Project ID: INLAND RAIL PROJECT

		Sa	mple Detail			Chlorophyll a	Conductivity (at 25°C)	Dissolved Oxygen	pH (at 25°C)	Phosphate total (as P)	Phosphorus reactive (as P)	Salinity (determined from EC)*	Total Suspended Solids Dried at 103-105°C	Turbidity	Polycyclic Aromatic Hydrocarbons	Metals M8	Nitrogens (speciated)
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
Syd	ney Laboratory	- NATA Site # 1	8217														
Bris	bane Laborator	y - NATA Site #	20794													Х	
Pert	h Laboratory - N	NATA Site # 237	36														
9	H2C 18A	Mar 12, 2019		Water	B19-Ma15941	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х
10	C2K 5A	Mar 13, 2019		Water	B19-Ma15942	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
11	C2K 6A	Mar 13, 2019		Water	B19-Ma15943	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
12	C2K 13A	Mar 13, 2019		Water	B19-Ma15944	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
13	C2K 10A	Mar 13, 2019		Water	B19-Ma15945	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
14	C2K DUPLICATE 3	Mar 13, 2019		Water	B19-Ma15946	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
Test	Test Counts					14	14	14	14	14	14	14	14	14	14	14	14

Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172

ABN : 50 005 085 521 Telephone: +61 7 3902 4600 Report Number: 645158-W

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/L	< 0.001		0.001	Pass	
Acenaphthylene	mg/L	< 0.001		0.001	Pass	
Anthracene	mg/L	< 0.001		0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001		0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001		0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001		0.001	Pass	
Chrysene	mg/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001		0.001	Pass	
Fluoranthene	mg/L	< 0.001		0.001	Pass	
Fluorene	mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001		0.001	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Pyrene	mg/L	< 0.001		0.001	Pass	
Method Blank	,g, <u>_</u>	0.00.		0.001		
Ammonia (as N)	mg/L	< 0.01	T	0.01	Pass	
Chlorophyll a	ug/L	< 5		5	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05		0.05	Pass	
Nitrate (as N)	mg/L	< 0.02		0.03	Pass	
Nitrite (as N)	mg/L	< 0.02		0.02	Pass	
Phosphate total (as P)	mg/L	< 0.02		0.02	Pass	
Phosphorus reactive (as P)	mg/L	0.01		0.01	Pass	
Total Kieldahl Nitrogen (as N)	mg/L	< 0.2		0.01	Pass	
Total Suspended Solids Dried at 103–105°C	mg/L	< 1		1	Pass	
Turbidity	NTU	<1		1	Pass	
Method Blank	INTO			1	Fass	
Heavy Metals				T	I	
Arsenic (filtered)	ma/l	< 0.001		0.001	Door	
, ,	mg/L	< 0.0001		0.001	Pass	
Cadmium (filtered)	mg/L				Pass	
Chromium (filtered)	mg/L	< 0.001		0.001	Pass	
Copper (filtered)	mg/L	< 0.001		0.001	Pass	
Lead (filtered)	mg/L	< 0.001		0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001		0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001		0.001	Pass	
Zinc (filtered)	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery			T			
Polycyclic Aromatic Hydrocarbons		0.4		70.400	D .	
Acenaphthene	%	81		70-130	Pass	
Acenaphthylene	%	80		70-130	Pass	
Anthracene	%	74		70-130	Pass	
Benz(a)anthracene	%	104		70-130	Pass	
Benzo(a)pyrene	%	119		70-130	Pass	
Benzo(b&j)fluoranthene	%	118		70-130	Pass	
Benzo(g.h.i)perylene	%	121		70-130	Pass	
Benzo(k)fluoranthene	%	121		70-130	Pass	
Chrysene	%	119		70-130	Pass	
Dibenz(a.h)anthracene	%	114		70-130	Pass	
Fluoranthene	%	95		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Fluorene			%	89		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	71		70-130	Pass	
Naphthalene			%	70		70-130	Pass	
Phenanthrene			%	92		70-130	Pass	
Pyrene			%	93		70-130	Pass	
LCS - % Recovery								
Ammonia (as N)			%	100		70-130	Pass	
Nitrate & Nitrite (as N)			%	100		70-130	Pass	
Nitrate (as N)			%	100		70-130	Pass	
Nitrite (as N)			%	119		70-130	Pass	
Phosphate total (as P)			%	113		70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	91		70-130	Pass	
Total Suspended Solids Dried at 10	3–105°C		%	108		70-130	Pass	
LCS - % Recovery				1	, , , , , , , , , , , , , , , , , , ,	T		
Heavy Metals								
Arsenic (filtered)			%	89		80-120	Pass	
Cadmium (filtered)			%	88		80-120	Pass	
Chromium (filtered)			%	90		80-120	Pass	
Copper (filtered)			%	89		80-120	Pass	
Lead (filtered)			%	88		80-120	Pass	
Mercury (filtered)			%	94		70-130	Pass	
Nickel (filtered)			%	90		80-120	Pass	
Zinc (filtered)			%	89		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
				Result 1				
Ammonia (as N)	M19-Ma16921	NCP	%	92		70-130	Pass	
Nitrate & Nitrite (as N)	M19-Ma16921	NCP	%	92		70-130	Pass	
Nitrate (as N)	M19-Ma16921	NCP	%	92		70-130	Pass	
Nitrite (as N)	M19-Ma16921	NCP	%	103		70-130	Pass	
Spike - % Recovery				_	,	·		
Heavy Metals	ı	1		Result 1				
Arsenic (filtered)	B19-Ma15933	CP	%	100		70-130	Pass	
Cadmium (filtered)	B19-Ma15933	CP	%	99		70-130	Pass	
Chromium (filtered)	B19-Ma15933	CP	%	83		70-130	Pass	
Copper (filtered)	B19-Ma15933	CP	%	80		70-130	Pass	
Lead (filtered)	B19-Ma15933	CP	%	81		70-130	Pass	
Mercury (filtered)	B19-Ma15933	CP	%	82		70-130	Pass	
Nickel (filtered)	B19-Ma15933	CP	%	83		70-130	Pass	
Zinc (filtered)	B19-Ma15933	CP	%	82		70-130	Pass	
Spike - % Recovery				1	T T			
Polycyclic Aromatic Hydrocarbons	i	I		Result 1				
Acenaphthene	B19-Ma15938	CP	%	98		70-130	Pass	
Acenaphthylene	B19-Ma15938	CP	%	94		70-130	Pass	
Anthracene	B19-Ma15938	CP	%	85		70-130	Pass	
Benz(a)anthracene	B19-Ma15938	CP	%	96		70-130	Pass	
Benzo(a)pyrene	B19-Ma15938	CP	%	102		70-130	Pass	
Benzo(b&j)fluoranthene	B19-Ma15938	CP	%	104		70-130	Pass	
Benzo(g.h.i)perylene	B19-Ma15938	CP	%	89		70-130	Pass	
Benzo(k)fluoranthene	B19-Ma15938	CP	%	77		70-130	Pass	
Chrysene	B19-Ma15938	CP	%	78		70-130	Pass	
Dibenz(a.h)anthracene	B19-Ma15938	CP	%	80		70-130	Pass	
Fluoranthene	B19-Ma15938	CP	%	74		70-130	Pass	
Fluorene	B19-Ma15938	CP	%	92	1	70-130	Pass	(

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene	B19-Ma15938	СР	%	70			70-130	Pass	
Naphthalene	B19-Ma15938	CP	%	76			70-130	Pass	
Phenanthrene	B19-Ma15938	СР	%	86			70-130	Pass	
Pyrene	B19-Ma15938	СР	%	75			70-130	Pass	
Spike - % Recovery									
				Result 1					
Phosphate total (as P)	B19-Ma15943	CP	%	102			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic (filtered)	B19-Ma15943	CP	%	94			70-130	Pass	
Cadmium (filtered)	B19-Ma15943	CP	%	96			70-130	Pass	
Chromium (filtered)	B19-Ma15943	CP	%	96			70-130	Pass	
Copper (filtered)	B19-Ma15943	CP	%	94			70-130	Pass	
Lead (filtered)	B19-Ma15943	CP	%	86			70-130	Pass	
Mercury (filtered)	B19-Ma15943	CP	%	89			70-130	Pass	
Nickel (filtered)	B19-Ma15943	CP	%	94			70-130	Pass	
Zinc (filtered)	B19-Ma15943	CP	%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		<u>. </u>							
				Result 1	Result 2	RPD			
Ammonia (as N)	M19-Ma16921	NCP	mg/L	1.7	1.7	1.0	30%	Pass	
Chlorophyll a	B19-Ma15933	СР	ug/L	< 5	< 5	<1	30%	Pass	
Conductivity (at 25°C)	B19-Ma15933	СР	uS/cm	920	910	<1	30%	Pass	
Nitrate & Nitrite (as N)	M19-Ma16921	NCP	mg/L	0.45	0.44	2.0	30%	Pass	
Nitrate (as N)	M19-Ma16921	NCP	mg/L	0.45	0.44	2.0	30%	Pass	
Nitrite (as N)	M19-Ma16921	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
pH (at 25°C)	B19-Ma15933	CP	pH Units	8.3	8.3	pass	30%	Pass	
Phosphate total (as P)	B19-Ma15933	CP	mg/L	0.12	0.12	1.0	30%	Pass	
Salinity (determined from EC)*	M19-Ma16795	NCP	mg/L	630	650	3.0	30%	Pass	
Total Kjeldahl Nitrogen (as N)	B19-Ma15933	CP	mg/L	1.1	1.3	19	30%	Pass	
Turbidity	M19-Ma21125	NCP	NTU	1.8	1.8	1.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Total Suspended Solids Dried at 103–105°C	B19-Ma15675	NCP	mg/L	40	37	8.0	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbon	s			Result 1	Result 2	RPD			
Acenaphthene	B19-Ma15937	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	B19-Ma15937	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	B19-Ma15937	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	B19-Ma15937	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	B19-Ma15937	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	B19-Ma15937	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	B19-Ma15937	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	B19-Ma15937	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	B19-Ma15937	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	B19-Ma15937	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	B19-Ma15937	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	B19-Ma15937	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	B19-Ma15937	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	B19-Ma15937	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
								Pass	
Phenanthrene	B19-Ma15937	CP	mg/L	< 0.001	< 0.001	<1	30%	rass	

D lia ata									
Duplicate				I = "			Г	1	
			•	Result 1	Result 2	RPD			
Dissolved Oxygen	B19-Ma15937	CP	mg/L	9.0	8.8	2.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	B19-Ma15942	CP	mg/L	0.002	0.002	2.0	30%	Pass	
Cadmium (filtered)	B19-Ma15942	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	B19-Ma15942	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	B19-Ma15942	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	B19-Ma15942	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	B19-Ma15942	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	B19-Ma15942	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	B19-Ma15942	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Ryan Gilbert Analytical Services Manager
Joseph Edouard Senior Analyst-Organic (VIC)
Julie Kay Senior Analyst-Inorganic (VIC)
Steven Trout Senior Analyst-Metal (QLD)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, in no case shall Eurofins; Imgl be liable for consequential clamages including, but not limited to, lost profits, damages for refaultive to meet decidines and lost production arising from this report. This document shall be reported.

Report Number: 645158-W