Battery industry opportunities for Queensland

Discussion paper

This discussion paper examines the opportunities for Queensland to become a domestic leader in Australia's future battery industry

- This discussion paper has been commissioned by the Queensland Government, Department of State Development, Infrastructure, Local Government and Planning to inform the development of the Queensland Battery Industry Strategy.
- It examines the opportunities within the Australian battery industry and identifies how Queensland can become a domestic leader.
- To estimate the size of the opportunity available for Queensland, scenarios are used to demonstrate the range of potential outcomes from developing Queensland's domestic battery industry.
- In examining the opportunities for Queensland, this discussion paper focuses on supply chains for lithium-ion batteries and other emerging technologies such as redox flow batteries.
- Lead-acid battery manufacturing is already well established in Queensland. As such, this discussion paper recognises the maturity of the lead-acid market and has considered new battery industry opportunities in the context of developing a diverse multi-technology sector in Queensland.

Executive summary

Domestic battery demand will total 90 GWh to 2030, with opportunities for a range of technologies, especially lithium-ion.

Global battery demand is expected to reach 2,045 GWh by 2030, nearly 11 times 2020 levels, and this will be driven by demand for electric vehicles.

Australian domestic demand is growing at the same rate and is forecast to provide 90 GWh of demand to 2030, including 26 GWh of Queensland demand that should be easily accessed by local producers.

While electric vehicles are the largest segment of battery demand, ongrid stationary storage is the fastest growing segment within the battery market with 37% annual growth across the decade. The domestic stationary storage market will be a key opportunity for Queensland in the medium term. As cell manufacturing capabilities build out, there is potential to target the markets in the international electric vehicle industry.

There are currently many battery technologies in the market. Lithiumion technology is expected to retain its dominant market position but there are smaller applications where other technologies can compete.

Queensland can build a battery industry based on existing up-stream capabilities, and competitive advantages in reliability, R&D, vanadium, and other critical minerals.

The current battery value chain is large and growing with any segment able to support a significant industry. Cell manufacturing for lithiumion batteries is the most significant global opportunity and is important for the growth of the industry overall. Queensland already has developing capabilities across the battery value chain, particularly in mining, refining and active materials. Key capabilities have been developed through investments in vanadium, cobalt, nickel, and other minerals; refining activities including for vanadium, high purity alumina, cobalt and nickel, and graphene, and active materials investments in anodes, cathodes, and vanadium electrolyte.

Overall, Queensland is likely to have competitive advantages through its:

- Existing capabilities in mining, refining to chemicals and active materials;
- R&D capabilities through the value chain but particularly in active materials, cell manufacturing and pack assembly;
- Ability to position itself as a reliable participant in global battery value chains and low future energy costs from renewable energy;
- Strong environmental, social and governance (ESG) credentials throughout the value chain;
- Proximity to markets in Asia; and
- Strong end to end capabilities in vanadium and related battery technologies

To capture these opportunities, Queensland will need to respond quickly given the lead times to develop capabilities within the battery value chain, particularly for cell manufacturing. In the short-term, Queensland may be able to benefit from developing capabilities in pack assembly due to the shorter lead times as they develop capabilities elsewhere in the value chain.

Queensland's battery industry has the potential to contribute \$1.3B in GVA and produce 9,100 jobs by 2030.¹

To develop a battery industry in Queensland there are two broad pathways to pursue:

- a local and specialised industry that could contribute \$0.6B in GVA
- (2) a leading Australian industry that could contribute \$1.3B in GVA

A localised and specialised industry would enable alternative technologies to continue to commercialise; meeting market opportunities as they arise.

A leading Australian industry would need to be underpinned by ambitious private sector investment and supply chain growth. This pathway has the potential to capture a greater market share outside of Queensland, while Queensland continues to develop a pipeline of alternative technology opportunities. To take advantage of this opportunity, Queensland would need to:

- Build a diverse customer base with a strong forward order book;
- Develop integrated research and development programs to support advanced materials manufacture, cell prototyping, pilot scale production, certification and testing; and
- Develop a skilled workforce to meet industry requirements

Contents

01	Domestic battery demand will total 90 GWh to 2030, with applications open to a range of technologies especially lithium-ion	5
02	Queensland can build a battery industry based on existing up-stream capabilities and competitive advantages in reliability, R&D, ESG, vanadium and other critical minerals	16
03	Developing Queensland's battery industry could generate up to \$1.3B of economic activity and 9,100 jobs by 2030	25
04	Appendix	31

Domestic battery demand will total 90 GWh to 2030, with opportunities for a range of technologies, especially lithium-ion

There are opportunities in the battery industry for Queensland to capture given the growing market, domestic capabilities and advances in technology

Growing global battery market

Demand for batteries has been growing significantly over the last decade. This growth is expected to continue to 2030, driven by the demand for electric vehicles and stationary storage needs. While batteries are produced through a complex global value chain, Australia has a strong presence in mining, while China is dominant downstream.

Opportunities across multiple technologies

There are a number of different battery chemistries and technologies each with different strengths to meet the wide range of applications. Lithium-ion is the most dominant technology today and, while it will continue to play a critical role in the future, new technologies are being developed in response to production costs, raw material availability and emerging applications. These technologies are increasingly targeting niche opportunities in utility scale storage, defence, mining and aerospace.

Queensland's capabilities

Queensland is in a position to leverage its existing capabilities and investments in the battery value chain to capitalise on rapidly growing opportunities.

Global battery demand is expected to grow over 10x this decade with annual demand reaching 2,045 GWh in 2030

Global battery demand is expected to reach 2,045 GWh by 2030, nearly 11 times 2020 levels, and this will be driven by demand for electric vehicles (EVs).

In a climate of decarbonisation, the world is transitioning to other forms of energy beyond fossil fuels. This has translated into growing demand for batteries globally, and is forecasted to increase by 10.5 times in the coming decade to 2030.

Demand for batteries in 2020 was driven by consumer electronics (52% of demand by energy storage) and electric vehicles (48%). However, this is expected to change by 2030, with electric vehicles accounting for 87% of global demand.

Stationary storage also presents a significant opportunity within the global battery industry. Battery demand for stationary storage is expected to increase by 140 times to reach 140 GWh by 2030. This accounts for 7% of global battery demand in 2030.

Exhibit 1: Project battery demand worldwide by application

GWh of annual demand, 2020-2030 (2020 = latest actual data)¹

On-grid stationary storage is the fastest growing segment within the battery market, growing annually by 37% in the decade to 2030

The global battery market is expected to increase nearly four-fold over the next decade to US\$133B, and this is driven by strong growth in on-grid stationary storage (37% p.a.) and passenger electric vehicles (17% p.a.).

With strong demand expected for batteries over the coming decade, the battery market is expected to increase 267% by 2030 to be a US\$133 billion industry. This will be driven by strong growth in stationary storage, particularly on-grid, as well as growing demand for passenger electric vehicles.

On-grid stationary storage is set to grow 22-fold (37% p.a.) to US\$12 billion by 2030. This growth is underpinned by strong demand to support the energy transition.

The battery market for passenger electric vehicles will continue to play an important role in the industry. Batteries for passenger electric vehicles will grow nearly five-fold by 2030 to become a US\$82 billion market.

The market for consumer electronics is expected to shrink with unit costs falling faster than the growing demand for devices.

Exhibit 2: Projected global battery market size by application

US\$ billion per annum, 2020 = latest actual data²

Notes: 1. Reductions in battery prices are expected to more than offset volumes growth over the next decade in consumer electronics.; 2. Potential for battery market size to be larger than stated, given the rapidly evolving demand profile for batteries globally Source: FBI CRC (2021); International Renewable Energy Agency (2017) Electricity storage and renewables: Costs and markets to 2030; Accenture analysis.

Batteries are produced through a complex global value chain, with Australia strong in mining and China dominant downstream

Exhibit 3: Battery value chain segments and market shares Materials **Battery manufacturing** Integration & services Integration, service and Mining raw materials **Refining to chemicals Cell manufacturing Battery pack assembly Re-use and recycling** Active materials maintenance Refining of raw materials to Extraction of raw materials Production of Manufacturing of the Production of the battery Integration and service of Re-use and recycling of as ores or brines. Raw highly purified chemical salts. battery cell including pack consisting of many batteries for different batteries materials through precursors and materials include lithium, Refined chemicals include finished active electrode chemical individual cells that are applications, including repurposing of degraded graphite, nickel, lithium hydroxide, lithium materials including LiNMC processing, cell assembly interconnected. installation and grid batteries, refurbishment or Description manganese, cobalt, carbonate, and nickel sulfate. and LFP cathodes¹, along and cell finishing, which Battery pack testing is an connection for on-grid Energy recycling to recover raw vanadium, copper and with graphite and silicon are critical for battery pack integrated part of battery Storage Systems (ESS) and materials. aluminium. anodes. performance and quality. pack manufacturing. maintenance for electric vehicles (EVs). Queensland could mine its Queensland could use its raw Queensland could use its Queensland could further Queensland could further Queensland will have Queensland will have graphite, nickel, cobalt, material reserves and service refined chemicals to develop develop its cell develop its battery pack opportunities to increase its **Opportunities for** opportunities to increase its revanadium, aluminium, the growing market for more active materials and manufacturing capabilities, assembly capabilities. integration, service and use and recycling capabilities Queensland diversified supplies of refined particularly given its for batteries other than leadgraphite and other electrolytes. particularly given its maintenance offerings as the reserves. chemicals. emerging R&D. emerging R&D. local market for battery storage acid as the feedstock volume grows. grows. Australia No dominant countries China China China Japan China **Highly localised** lapar Share of segment US Japar China by country (share South 10% 11% Korea 11% South of revenue, %)² 50% Chile 50% 53% Korea South 20% 20% 6% 64% Other Korea China South Other Korea Other Other Other Japan

Notes: 1. Lithium nickel manganese and cobalt cathodes and lithium iron phosphate cathodes respectively; 2. Data for mining, refining, cell manufacturing and assembly are for 2017. Data for active materials is the average of country market share for anode, cathodes and lithium iron phosphate cathodes respectively; 2. Data for mining, refining, cell manufacturing and assembly are for 2017. Data for active materials is the average of country market share for anode, cathodes and electrolytes in 2019, and data for recycling uses distribution of leading recycling companies in 2019.

Source: AusTrade (2018) The Lithium-ion Battery Value Chain: New economy opportunities for Australia; Roskill (2020) Lithium-ion Batteries: Outlook to 2029, Tables 18-21 and Chapter 14; Accenture analysis.

Queensland will see 26GWh of demand from in-state markets through to 2030 plus 63GWh from the rest of Australia and 1GWh from defence opportunities

Application (not exhaustive)		Potential Queensland market to 2030 ¹	Potential market from rest of Australia to 2030 ¹
Grid stationary storage ²	 State ownership of Queensland's energy utilities could offer a long-term secure base of demand for battery storage in conjunction with Queensland's development of renewable energy zones. 	14 GWh	27 GWh
Behind the meter storage ³	 Behind the meter residential storage and participation in virtual power plants is on the rise. Queensland's leading rate of solar uptake – 4.1 GW of rooftop solar from 700,000 homes – is being increasingly paired with energy storage systems. 	7 GWh	18 GWh
Off-grid stationary storage ⁴	• 2% of Australians live off-grid. More than 6% of Australia's electricity use occurs in these regional and remote areas.	1 GWh	5 GWh
Mining ⁵	 There are currently 75 large resources projects in Queensland and over 350 operating mines in Australia. Electrification of mining haulers represent a potential market for mobile batteries with many miners looking to decarbonise operations. However, with R&D ongoing, short-term deployments are likely to be in new mining operations. Remote mining activities may continue deploying specialised off-grid storage. 	0.7 GWh	2.6 GWh
Electric trucks and buses	 Queensland is currently home to significant bus and truck manufacturing. CSIRO projects almost 15,500 electric buses and almost 70,000 electric trucks by 2030 under a step-change scenario for Eastern Australia. 	3 GWh	10 GWh
	Cumulative demand:	26 GWh	63 GWh

Two additional applica	tions exist only at the aggregate domestic and international level	Potential Market ¹
Defence	 Specialty batteries for the military vehicle electrification represent local demand where supply chain sovereignty is of heightened value. Some manufacturing of military vehicles currently occurs in Queensland. Queensland hosts 14 of the 64 military bases in Australia where stationary storage could either supply or backup their power grids. 	Australia: 1 GWh
Electric passenger vehicles	 Demand for EV batteries is experiencing strong competition from established global players. EVs imported by Queenslanders will contain 32 GWh of EV battery storage between now and 2030. Without domestic manufacturing capabilities for passenger vehicles, addressing this demand is challenging. 	International: 7,000 GWh Australia: 133 GWh

Notes: 1. Total cumulative demand from 2023-2030 inclusive and includes all the demand from NEM in FY30-31 from the Australian Energy Market Operator (AMO) Integrated System Plan (ISP); 2. based on AEMO Step Change scenario, for East Coast of Australia; 3. Distributed energy storage includes grid connected batteries installed to support the customer's own load as well as coordinated systems in a virtual power plant arrangement; 4. Based on 2% of Australian population, average household size of 2.6 people and average battery size of 42kWh; limited data makes this market challenging to size; 5. Based on 20% of Australian mines electrifying, with an average of 15 haulers per mine with a 2MWh battery per hauler and a battery replacement after 2.5 years as well as a 50MWh battery per mine electrifying

Global cell manufacturing capacity is forecast to grow 14-fold with the current top six manufactures plus OEMs holding three quarters of this capacity

Global yield adjusted capacity for battery cells is forecast to increase 14 times to 4,650 GWh in the decade to 2030. The current top 6 global manufacturers accounted for 79% of the global cell manufacturing capacity. Over the decade it is forecast the original equipment manufacturers (OEMs), both directly and through partnerships will grow from 2% to 20%.

The cell manufacturing market will continue to be dominated by the current top 6 manufacturers and OEMs, both directly and through partnerships. The current top 6 manufacturers accounted for 79% of global production capacity in 2020. OEMs are forecast to expand their share to 20% of global cell production capacity by 2030. The top 6 manufacturers and OEMs are forecast to hold 75-81% of the total capacity across the whole decade.

New entrants on the global market face a high barrier to entry. The incumbent players and OEMs can leverage economies of scale, their technology leadership, and increasing vertical integration. This competition is also occurring in an environment with some material and skill bottlenecks which may contribute to keeping the cell manufacturing capacity consolidated beyond 2030.

Exhibit 4: Breakdown of cell manufacturing by type of manufacturer

GWh of yield adjusted capacity¹

Notes: 1. Yield adjusted capacity captures announcements and forecast development of total capacity to produce batteries Source: Goldman Sachs (June, 2022) Global Batteries: The Greenflation Challenge II; McKinsey (January, 2022); Capturing the battery value- chain opportunity; Accenture analysis

Strong automotive industries underpin local EV battery industries, reducing the opportunities for EV batteries for Queensland in the medium term

While global battery demand for use in electric vehicles (EVs) is expected to increase nearly 20-fold by 2030, there is currently less potential for Queensland to build a battery industry focused on EVs in the medium term.

Co-location with a large EV manufacturer and perusing strong vertical integration is a key driver to consolidate value and secure supply chains in a constrained global commodity market.

In most current instances, local EV manufacturing is underpinned by favourable domestic policy with additional support from consumer side incentives. As an example of this, the USA's Inflation Reduction Act targets support to domestic manufacturers, with some early speculation that the EU should follow suit¹.

Inflation Reduction Act – USA

The inflation reduction act (IRA) raises significant barriers to countries outside North America participating in component manufacturing for US EVs and prioritises battery materials sourced from free trade partners, such as Australia.

The IRA creates a \$7500 consumer tax incentive for the purchase of eligible EVs that meet escalating sourcing thresholds. To qualify, 100% of battery components need to be manufactured in North America (by 2028). In addition, 80% of critical minerals need to be sourced and processed from free trade partners (by 2026), which presents significant opportunities for Australia and Queensland.

The IRA also includes a \$2 billion grant pool to build up domestic manufacturing facilities.

Exhibit 5: Relationship between vehicle manufacturing capacity and EV battery production by country

Y-axis: Thousands of vehicles (2022); X-axis: GWh of EV batteries manufactured (2022)

Fact Box

GWh of EV battery manufacturing

The energy transition calls for 63 GWh of additional stationary storage on the NEM by decade's end, a massive expansion of the current 1 GWh battery fleet

The demand for stationary storage in Australian Energy Market Operator's (AEMO) Step Change scenario called for an additional 63GWh of stationary storage through to 2030-31. This is the equivalent of building the currently commissioned utility battery fleet seven times over every year (on average). This scenario includes 21GWh of battery storage installed in Queensland.

The market for this rapidly expanding industry averages at \$2.5 billion through to 2030-31. Although the demand grows more rapidly in the second half of the decade, the overall market for stationary storage grows more consistently as unit battery costs continue to fall.

Year to year fluctuations in demand are tied to the commissioning of large renewable projects in particular states on the National Energy Market (NEM) which also influence the type of batteries commissioned in a given year.

Size of individual battery projects is set to increase with GWh scale batteries proposed by SolarQ for a 1GW/4GWh project in Gympie as well as Syncline Energy with a proposed 1.2GW/1.6GWh system in Melton, Victoria.

The role of battery systems with the grid will also continue to evolve. For example, South Australia's Hornsdale Power Reserve battery is now providing inertia services to the grid, and Stanwell's proposition of a multi-staged 1.3GW/2.6GWh project on site at its coal power station near Rockhampton, Queensland.

Exhibit 6: Australian battery demand for grid connected stationary storage

GWh of annual demand under AEMO ISP^{2, 3, 4} in Queensland and the rest of Eastern Australia

Notes: 1. Based on Step Change scenario using CSIRO forecasts (2022). 2. Based on Step Change scenario. 3. Includes medium storage, shallow storage, distributed storage and coordinated DER storage, underlying mix of these types of storage influence the size of the battery market in the given year. 4 Model begins from 2023-2024 and supplemented with data on project pipeline in AEMO Generator Information report Source: AEMO ISP (2022); USA National Renewable Energy Laboratory (2022); AEMO Generator Information (2022); Spiire (2022); The Electricity Hub (2022); AEMO System Strength and Inertia Report (2020); Accenture analysis

Lithium-ion technology is expected to retain its dominant market position but there are applications where other technologies can compete

Technology	Description	Notable projects	Existing activity in Queensland (public, not exhaustive)
Lithium-ion	 First commercialised in 1980. Global manufacturing scale production of batteries for use in consumer electronics and mobility applications, with chemistries such as NMC and LFP.¹ Energy density sufficient for compact mobility applications.² 	 Australia's nine operational grid storage batteries (totalling 760MW/1054 MWh) all utilise lithium-ion technology. 	 Vena Energy Australia commissioned its 100MW/150MWh battery at Woleebee in August 2022. Feline is producing high performance cells for niche applications, along with specialty cathodes. VSPC are working towards pilot scale production of LFP cathodes.
Flow Batteries	 External electrolyte tanks can be scaled to match desired output with discharge duration. Battery life typically anticipated to be 25 years with a recoverable electrolyte, which presents opportunities for recycling. Suitable for longer duration storage. 	 2MW/8MWh battery in South Australia 100MW/400MWh vanadium flow battery commissioned in China. 200MW/2GWh iron flow battery purchased in the USA. 	 Energy Storage Industries Asia-Pacific is constructing a pack assembly facility for iron-flow batteries from 2024 with a target production of 400MW by 2026. Vecco Group have announced plans to build to 100MWh per annum of vanadium electrolyte production drawing from its Debella Project mine in North Queensland. Redflow has developed zinc-bromine flow batteries for small commercial applications and have also installed a 500kW/2MWh system in California.
Lead-acid	 The first rechargeable battery, invented in 1859. Mature technology with a 95-99% recycling rate. Widely used as a source of stand-by or infrequent power. Low self-discharge rate but a low power density. 	 Frequently used for starting or back up power in automobiles and remote sensing. 10MW/40MWh lead-acid battery commissioned by the Southern California Edison Company in 1988. 	 Century Yuasa produces 1.2 million modern lead-acid batteries at its plant in Brisbane from new and recycled material.
Lithium sulfur	 High theoretical energy density,³ which will likely drive usage in niche applications.⁴ Potential future applications for vehicles. 	 Sion and Oxis have some commercial products available. 	 Queensland headquartered Li-S is using Boron Nitride Nano-tube Technology (BNNT) with lithium sulfur batteries, which will increase energy density and extend cycle life.
Graphene aluminium-ion	 Very fast recharge time and high energy density. Potential mobility and stationary storage applications. 	 To date no large scale graphene batteries have been deployed. 	 Graphene Manufacturing Group is developing end-to-end graphene battery production in Queensland in conjunction with University of Queensland (UQ).
Sodium-ion	 Similar features to lithium-ion batteries, but with improved temperature tolerance and safety features. Suited for applications that prioritise power density,⁵ with potential stationary storage applications. 	 Anticipated production by Natron Energy and Clarios International of 600MW/year of sodium-ion batteries from 2023 in Michigan. 	 No manufacturing capacity exists for sodium-ion battery technology. However, UQ is contributing to foundational research in this space. Queensland University of Technology (QUT) and Sparc Technologies have formed a partnership to commercialise battery materials including for sodium-ion batteries.
Sodium-sulfur	 Suitable for longer duration storage. First deployed in 1995 after development from NGK. 	 Used for projects including grid and microgrid applications, with 700MW/4.9GWh of capacity installed globally. 	BASF and QUT are working to pilot the deployment of sodium sulfur batteries.

Given the current scale of production and expected learning rates, lithium-ion batteries are likely to have a levelised cost of storage advantage over lead-acid and vanadium flow batteries in the future. However, redox flow batteries are likely to be a cost effective option for longer duration storage, particularly given the potential to scale flow batteries by increasing the volume of electrolyte without increasing capital expenditure. Competition for raw materials could also impact production costs for lithium-ion batteries, potentially driving the development of alternate technologies that target specific applications and utilise cheaper and more readily available materials.

Notes: 1. Cathode chemistries of nickel manganese cobalt and lithium iron phosphate respectively; 2. Energy density of 100-265 Wh/kg; 3. Theoretical density of up to 2700 Wh/kg, although current cells have about 470 Wh/kg; 4. Including satellites, drones and the defence sector; 5. Including power tools and uninterruptible power supply (UPS) applications. There are also opportunities for sodium-ion batteries to be used in diesel generators and car engines.

Sources: Clean Energy Institute (2022); Yadlamalaka Energy (2022); Sacramento Municipal Utility District (2022); USA Department of Energy (2022); Vena Energy Australia (2022); Energy Storage News (2022); Graphene Manufacturing Group (2022); Century Batteries (2022); Vecco Group (2022); The Faraday Institution, (2020); The Faraday Institution, (2021); Li-S Energy (2022); Century Batteries (2022); Sources Careford (2022); Sources Careford (2022); Century Batteries (2022); Century Bat

Queensland can build a battery industry based on up-stream capabilities and competitive advantages in reliability, R&D and vanadium

Queensland has some advantages in the upstream battery value chain, but cell manufacturing capabilities are key to supporting a local industry

Queensland has some competitive advantage in the upstream battery value chain, particularly in mining and raw materials. However, cell manufacturing is critical to the battery value chain and Queensland will need to further develop these capabilities to establish a local battery industry.

The biggest opportunities for Queensland lie at the intersection of the most attractive markets and the areas where Queensland has the strongest capabilities.

The most attractive battery value chain opportunities lie in lithium-ion batteries, which is the dominant technology other than lead-acid batteries. These opportunities are particularly large for cell manufacturing, which is critical for industry development, accounting for 45% (US\$136B) of global revenue in 2030.¹

Queensland's capabilities are predominately in mining, refining and active materials. However, there are emerging capabilities in cell manufacturing and pack assembly.

Queensland is most cost competitive in the mining and refining of its available raw materials, which includes vanadium, aluminium, graphite, nickel and cobalt. If the supply chain for these materials were developed, Queensland could be cost competitive for some active materials.

Factors		Description	Summary of Queensland's opportunity	
Attractiveness of the battery market	Size	The scale of the global opportunity for a part of the value chain, as measured by future revenue opportunities.	Cell manufacturing for lithium-ion batteries is the most significant global opportunity by size and impact on	
	Importance in value chain	The impact of a capability on broader industry development through providing supply chain security and reducing materials and logistics costs.	industry development, with other substantial opportunities in pack assembly and refining to chemicals for the lithium-ion battery value chain.	
Queensland's capabilities	Current and planned activities	The scale of current and planned activities for a part of the value chain, as measured by planned production, level of investment and importance of activities to the battery value chain.	Queensland's mining and refining activities are the most significant in the battery value chain by investment, followed by active materials and integration, service and maintenance.	
	Differentiated products	The ability of Queensland to provide products which are differentiated either by their quality or by being nascent with unique applications.	There are strong R&D capabilities throughout the value chain in Queensland, particularly in active materials , cell manufacturing , and pack assembly .	
	Workforce	The strength of labour skills within companies and research institutions for a part of the value chain.	Queensland has a skilled mining workforce , and emerging labour skills in refining, active materials, and pack assembly.	
	Cost competitiveness	The cost competitiveness of the labour, materials, energy, logistics and tax inputs for part of the value chain.	Queensland has cost advantages for some raw materials and refining to chemicals. This may also reduce the materials and logistics costs for some active materials.	

Exhibit 7: Opportunity for Queensland in the battery value chain

Notes: 1. There is potential for revenue to be higher than stated, given the rapidly evolving demand profile for batteries globally and domestically, as well as the recent supply challenges for multiple critical minerals having significant price effects

Source: WEF (2019), A Vision for a Sustainable Battery Value Chain in 2030; Lithium Energy (2022); Australian Mines (2022); Coni, (2022); Coni, (2022); QEM (February, 2022); AFR (2021); Queensland Government (2022); Rio Tinto (2022), Roo Metals (2021), Alpha HPA (2022); Lava Blue (2022); QPM (<u>October</u>, 2021); QPM (<u>June</u>, 2022); Vecco Group (2022a); Vecco Group (2022b); Graphene Manufacturing Group, (2022); Cather Value Chain in 2030; Lithium Australia (July, 2022); BI CRC (July, 2022); BI CRC (July, 2022); Rob Tinto (2022); Century Yuasa (202

Queensland has the opportunity to pursue the significant opportunities in cell manufacturing by linking up its refining capabilities with midstream activities

		Materials		Battery ma	nufacturing	Integration		
	Mining raw materials	Refining to chemicals	Active materials manufacturing	Cell manufacturing	Battery pack assembly	Integration, service and maintenance	Re-use and recycling	Summary
tractiveness of e battery market						Highly localised		
	Global demand for minerals to be used in the battery value chain, particularly for nickel, cobalt, graphite and lithium.	Opportunities to refine to chemicals due to increased demand for battery materials as the value chain expands.	Opportunities to manufacture active materials given supply shortages and the need to improve quality to boost battery performance.	Significant opportunities given the scale of revenue available for cell manufacturing, particularly in lithium- ion batteries.	Opportunities for pack assembly to grow in order to address the demand for energy storage.	Largely localised opportunities for an installation and maintenance workforce.	Important in developing a circular battery value chain and to improve the environmental impact of batteries.	Attractive opportunities acros the entire battery value chain particularly in cell manufacturing and pack assembly due to their scale of revenue and importance for value chain development.
Queensland's apabilities								
	Capabilities in vanadium, aluminium, and potentially graphite, nickel and cobalt, but not all materials mined will be used for the battery value chain.	Capabilities in refining vanadium, High Purity Alumina (HPA), nickel, cobalt and potentially graphite, but not all refined materials will be used for the battery value chain.	Capabilities in cathodes, anodes, vanadium electrolyte and iron electrolyte.	Capabilities in lithium- ion cell innovation, along with capabilities in graphene aluminium- ion and potentially vanadium flow cells.	Capabilities in lithium-ion battery pack innovation, along with graphene aluminium-ion and iron flow batteries, and potentially vanadium flow batteries.	Capabilities in energy storage systems and EV charging.	Capabilities in lead-acid recycling, and potentially for other types of batteries. Feedstock volume growth is needed to support facilities, but in the long term recycling can provide materials for cell manufacturing.	Emerging capabilities, particularly in the mining and refining of particular raw materials, and differentiated active materials, cell and pack products.

Source: WEF (2019), A Vision for a Sustainable Battery Value Chain in 2030; Goldman Sachs, (March, 2022), Global Batteries: The Greenflation Challenge; Goldman Sachs (June, 2022), Global Batteries: The Greenflation Challenge; Goldman Sachs (June, 2022), Global Batteries: The Greenflation Challenge; Goldman Sachs (June, 2022), Australian Mines, (2022), Sustralian Mines, (2022); Cooni, (2022); Queensland Government (2021); QEM (February, 2022); AFR (2021); Queensland Government (2022); Rio Tinto (2022), Aeon Metals (2021), Alpha HPA (2022); Lava Blue (2022); QPM (Jotober, 2021); QPM (June, 2022); Vecco Group (2022a); Vecco Group (2022b); Graphene Manufacturing Group, (2022), AnteoTech (August 2022); Lithium Australia (July, 2022); FBI CRC (July, 2020); NBTC (2022); Magnis (2022); Century Yuasa (2022); FEI Asia Pacific, (2022); Tritium Charging (2021); RedEarth (2019); Queensland Government (2018); ARENA (2022); ARENA (2021); Prohelion (2022); Queensland Government (2022); Center (August 2022); Center (2022); Center (2022); Center (2022); Center (2022); ABRI (2022); Partice (2022); ABRI (2022); Center (2018); ARENA (2022); ARENA (2021); Prohelion (2022); Queensland Government (2022); Center (2018); ARENA (2022); Center (2018); ARENA (2022); Center (2018); Cen

Cell manufacturing for lithium-ion batteries will have a \$136B market by 2030, contributing up to 45% of battery value-chain revenue

The lithium-ion battery industry is forecast to be a US\$300B industry by 2030, with cell manufacturing presenting the largest opportunity in the value chain. Cell manufacturing will account for 45% of global revenue (\$US136B).

The application of lithium-ion technology within the global battery value chain is expected to grow the market to be a US\$300B industry. The largest opportunity within the lithium-ion battery value chain will be cell manufacturing, accounting for 45% of global revenue and a 25% industry profit margin.

There are also other opportunities in refining chemicals (25% of global revenue) and battery pack assembly (16% of global revenue). The remaining 15% of revenue is made up by opportunities in active materials, reuse and recycling, and mining raw materials. Mining raw materials also has the largest industry profit margin, including both wages and business profits (49% industry margin).

By 2030, China is expected to remain the largest player in the global battery market, accounting for \$126B of global revenue (42%), while the EU and US will make up another 20% of the global market.

Exhibit 9: Potential lithium-ion battery value chain revenue by 2030

\$US billions, 2030 (base case)^{1,2}

Note: 1. Totals may not sum to 100% due to rounding; 2. There is potential for revenue to be higher than stated, given the rapidly evolving demand profile for batteries globally and domestically, as well as the recent supply challenges for multiple critical minerals having significant price effects; 3. Including business profits and wages Sources: WEF (2019), A Vision for a Sustainable Battery Value Chain in 2030; Accenture (June, 2021), Future Charge- Building Australia's Battery Industries; Accenture analysis.

Queensland has growing capabilities throughout the battery value chain, particularly in refining

Exhibit 10: Queen	sland's capabilities acro	oss the battery value cha	ain		Streng	th of capability High	er Lower	
		Materials		Battery manu	ufacturing	Integration & services		
	Mining raw materials	Refining to chemicals	Active materials & electrolytes	Cell manufacturing	Battery pack assembly	Integration, service and maintenance	Re-use and recycling	
Key areas of capability ¹								
Current and planned activities	Vanadium: QEM Julia Creek, Vecco Debella, Richmond Vanadium, St Elmo mine, Critical Minerals Group Nickel and cobalt: Sconi mine, Aeon Metals Walford Creek Cobalt mine Graphite: Lithium Energy Burke project	High Purity Alumina (HPA): Lava Blue, Alpha HPA, Vecco Debella, Queensland Pacific Metals (QPM) TECH Nickel and cobalt: Sconi, QPM TECH Graphene: Graphene Manufacturing Group (GMG) Battery grade material development and qualifying: UQ, QUT	Anodes: AnteoTech Cathodes: VSPC, PBT, Feline Vanadium electrolyte: Vecco Prototyping and development of cathodes and electrolytes: UQ, QUT	Testing and prototyping: QUT's energy storage research, which encompasses the National Battery Testing Centre (NBTC) Lithium-ion battery cells: Imperium3 Gigafactory, Feline Graphene aluminium-ion battery cells: GMG Lead acid cells: Century Yuasa (CYB)	Testing: QUT's energy storage research, which encompasses the NBTC Lithium-ion batteries: Feline, RedEarth Iron flow batteries: ESI Asia Pacific Zinc-bromine flow batteries: Redflow Lead acid batteries: CYB	Testing: QUT's energy storage research, which encompasses the NBTC Electric vehicle charging: Tritium Charging, Evie Networks Electric vehicles: BusTech Energy storage systems: Redback Technologies, RedEarth, Prohelion, eleXsys Battery casing: Vaulta	Lead acid battery recycling: CYB, RJ Batteries ⁷ , Lex Enviro Services ⁸ , Gold Coast Resource Recovery Lithium-ion battery recycling collection: Powercell ⁹ , MRI e- cycle, Envirostream Tracking: Everledger	
Investment ²	\$2.5-5B ³	\$500M- \$2.5B ³	\$50-100M	>\$150M⁴	\$50-100M	\$50-100M	<\$50M	
Differentiated products	Significant and shallow vanadium reservesHigh grade graphite	 Ultra High Purity Alumina Graphene using a proprietary process 	Silicon anodesReduced cost cathode process	 High performance lithium-ion cells Graphene aluminium-ion cells 	 High performance lithium- ion packs Iron and zinc bromine flow packs 	Fast charging technology	Local recycling	
Workforce⁵	Skilled mining workforce	 Current skills at GMG, and emerging skills 	 Current skills at AnteoTech and VSPC 	Current skills at Feline, GMG and CYB	 Current skills at Feline, Redflow, RedEarth and CYB 	Current skills within diverse capabilities	Current lead-acid battery recycling skills	

Notes: 1. Based on the size of investment, amount of current and planned activities, and relevance of activities to the battery value chain; 2. Publicly available investment figures for activities related to emerging battery technologies within Queensland, not including investment into lead-acid capabilities or capabilities or tside of Queensland. Investment figures are likely to be higher than this due to activities which don't have available investment figures; 3. Not all of the capabilities in mining and refining will be used for the battery value chain; 4. This doesn't include the \$3B investment figures with transferable skills, such as chemical engineers, and maintenance technicians.

Source: Lithium Energy (2022); Australian Mines (2022); Sconi, (2022); Sconi, (2022); QEM (Jebruary, 2022); AFR (2021); Queensland Government (2022); Rio Tinto (2022); Australian Government (2022); Australian Government (2022); Australian Government (2022); Critical Minerals Group, (2022); Vecco Group (2022); Vecco Group (2022); Critical Minerals (2022); Critical Minerals Group, (2022); Vecco Group (2022); Critical Minerals (2022); Vecco Group (2022); Critical Minerals (2022); Critical Minerals (2022); Critical Minerals (2022); Vecco Group (2022); Critical Minerals (2022); Critical Minerals (2022); Vecco Group (2022); Critical Minerals (2022); Critical Minerals (2022); Vecco Group (2022); Critical Minerals (2022); Critical Minerals (2022); Vecco Group (2022); Critical Minerals (2022); Critical Minerals (2022); Vecco Group (2022); Critical Minerals (2022); Critical Minerals (2022); Vecco Group (2022); Critical Minerals (2022); Critical Minerals (2022); Critical Minerals (2022); Critical Minerals (2022); Vecco Group (2022); Critical Minerals (2022); Critical Minerals (2022); Vecco Group (2022); Critical Minerals (2022); Critical Minerals (2022); Vecco Group (2022); Critical Minerals (2022); Critic

Queensland's cost competitiveness in mining and refining may drive improved competitiveness in active materials, reducing costs for battery manufacturing

Queensland has cost competitiveness in mining and refining of particular raw materials, which can lower costs for active materials production, and potentially cell manufacturing and pack assembly.

The availability and grade of the critical mineral reserves in Queensland could support the cost competitiveness of active materials and electrolyte production. Utilisation of cost competitive active materials and electrolytes, coupled with industry development, would serve to reduce costs for cell manufacturing and therefore pack assembly.

Queensland is not likely to be cost competitive with China given China's scale of production and well-developed supply chains, but there is a growing global market for non-China sources of battery materials. These sources could include Queensland given the State's ESG credentials and R&D into battery materials and technology.

If Queensland can develop its local raw materials capabilities, the State is likely to be able to develop cost effective active materials¹ compared to countries other than China, including South Korea. Utilising these cost competitive active materials and electrolytes in conjunction with industry development could reduce materials and logistics cost for cell manufacturing, and therefore for pack assembly.

Queensland also has the potential to be able to provide future cheap renewable energy.² The State is targeting 70% renewable electricity generation by 2032, supported by the \$145M QREZ initiatives. It is estimated that wholesale electricity prices in Queensland will be 15 per cent lower on average by 2040 than they would be without the Queensland Energy and Jobs Plan.

					•••••						
				ı 🔴	Neutral						
Exhibit 11: Battery value chain o	ost competiti	iveness ³		🥟 (Current o	disadv	vantage im	proved wit	h industry de	evelopmen	t
2022					Queensla	and d	isadvantag	e			
Mining raw materials chemicals	•	Act	ive materi electrolyte	als & es	\rangle	Cell	manufact	uring	Batte	ry pack ass	sembly
Queensland has cost advantages in	Cost factor	% of unit cost	China⁴	South Korea⁴	% un cos	of lit st ⁶	China⁴	United States ⁴	% of unit cost	China⁴	United States ⁴
availability and purity of raw materials, particularly in vanadium, aluminium and	Labour ⁵	19	•	•	g)	•	•	5	•	•
graphite, along with its available nickel and cobalt.	Energy	2	•	•	4	Ļ	•	•	2	•	•
	Logistics	2	•	٠	7	,	•	۲	8	٠	۲
	Tax ⁶	8	•	•	2	2	•	•	18	•	•
	Materials	68	•	•	5	9	•	۲	67	•	•
	Overview										

Oueensland advantage

Notes: 1. Particularly for cathodes, vanadium electrolytes, and potentially iron electrolytes; 2. The greater availability of renewable energy may translate into lower costs because renewable energy is expected to have lower LCOE by 2030 compared to black coal, brown coal and gas; 3. Due to the highly localised nature of integration, service and maintenance and recycling, the cost competitiveness of Queensland globally is less relevant to developing capabilities; 4. Compared to the largest players in the EV battery value chain; 5. For the manufacturing and professional and scientific services industries: 6. Based on Federal taxes: 7. On average between countries

Source: IEA (2022), Global Supply Chains of EV batteries; ILO (2022), Average monthly earnings of employees; ABS, 2016 Census Data; Ahmed (2017), Cost and energy demand of producing nickel manganese cobalt cathode material for lithium-ion batteries; Orangi & Strømman, (2022), A Techno-Economic Model for Benchmarking the Production Cost of Lithium-Ion Battery Cells; Sakti et al., (2015), A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification; Argonne National Laboratory, (2019), Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles; PwC (2022) Tax Summaries; Accenture (June, 2022), Future Charge- Building Australia's Battery Industries; AEMO (2022), NEM Data Dashboard; IEA (2022) Electricity Market Report July 2022; Energy Council (February, 2022) International Electricity prices: How does Australia compare?; World Bank (2018) Trade Logistics in the Global Economy; Accenture Analysis

Queensland has competitive advantages in reliability, R&D, renewable energy, ESG, and capabilities throughout the vanadium value chain

Exhibit 12:	Queensland's competitive advantages Segments: 1. hing raw material*2. fining to chemical Active materials manufacturing Cell m	nanufacturing sattery pack assembly 6 Integration, service and maintenance 7 Recycling
	Reliability	
U	 Queensland can be a reliable global participant in the battery market that helps reduce geopolitical risk given its: Availability and purity of vanadium and aluminium, and potentially graphite Openness to trade and low sovereign risk 	Queensland's reliability advantage supports all parts of the value chain
(m)	Specialisation and R&D	
AND T	 Queensland can develop its specialisation by: Utilising its R&D from research institutions such as James Cook University (JCU), QUT, UQ and Griffith University, which have been supported by the early adoption of R&D support services such as the Advanced Battery Facility and the NBTC Growing its innovation into active materials and a diverse range of battery chemistries¹ 	Queensland's specialisation advantage supports refining chemicals, active materials, cell manufacturing, pack assembly and integration, service and maintenance.
	Long-term renewable energy prospects	
	 Queensland can harness its expected future availability of renewable energy² to: Reduce the carbon footprint of materials and products throughout the value chain Potentially help to drive down energy costs at all points in the value chain³ 	Queensland's potential renewable energy advantage supports all parts of the value chain
	ESG credentials	
	 Queensland has strong ESG credentials⁴ which can be used to: Develop products with solid ESG records, such as the products within the battery chain that are being developed with net zero or carbon neutral emissions targets⁵ 	Queensland's ESG credentials supports all parts of the value chain
(Δ)	Vanadium	
60/	Queensland has 30% of the world's supply of vanadium, which can support cost competitiveness in: Mining and refining vanadium, and developing vanadium electrolyte Manadium flow battom manufacturing 	Queensland's vanadium advantage supports upstream and midstream parts of the value chain
Notes: 1. T the Queen	• VANAGUIT NOW DATLERY MANUACTURING hese chemistries include high performance lithium-ion batteries, lithium sulphur batteries, graphene aluminium-ion cells, zinc-bromine batteries, and iron flow packs; 2. 21.4% of electricity produced in Queensland is from renewable sources, with a t sland Jobs and Energy Plan; 3. Renewable energy is expected to have lower LCOE by 2030 compared to black coal, brown coal and gas; 4. ESG credentials supported by Queensland's renewable energy generation, strong human rights, skilled workfore a landbudge product from a na Plane. Critical Mineral Group and other	target of 70% by 2032 as outlined in ce, stable governance and free

Source: ILO (2022), Average monthly earnings of employees; ABS (2022) Australian Industry, 2018-2019, Catalogue 8155; Bridge & Faigen, (2022), Towards the lithium-ion battery production network: Thinking beyond mineral supply chains; The White House (June, 2022), Building Resilient Supply Chains, Revitalizing American Manufacturing, and Fostering Broad-Based Growth; CSIRO (June, 2022), GenCost 2022-21; Queensland Government, (2022a), Queensland's renewable energy target; Queensland Government, (2022b), Focus Area- ESG; Queensland Government, (2021), Queensland's renewable energy target; SeG credentials; Lava Blue, (2022); Critical Minerals Group, (2022); Accenture analysis

Key mineral reserves in Queensland could supply some inputs for some components of both lithium-ion and flow batteries

Queensland has reserves for key battery value chain critical minerals, including vanadium, nickel, cobalt, graphite and aluminium.

Queensland has significant vanadium reserves, but limited lithium reserves. 28% of the global reserve of vanadium is in shallow deposits in the Eromanga basin in central-northern Queensland. The 6.7Mt of vanadium expected from the deposit would represent 2,000 GWh of flow batteries. There has also been a renewed focus on lithium lepidolite and recent exploration activity both in North Queensland offers some future potential. To date no formal reserves have been reported.

Queensland also has some nickel and cobalt reserves. Nickel was historically mined at Greenvale (1972-1992), and the operations at the Sconi project are set to recommence nickel mining in the area from 2024, in addition to mining cobalt. Cobalt is a key cathode material for some lithium-ion batteries, but there are supply chain concerns given that 70% of the world's cobalt was produced by the Democratic Republic of Congo in 2022. Queensland has 1% of the global supply for cobalt due it its 57 kt of reserves. Additionally, there is an estimated 69 kt of partially processed cobalt in the Yabulu refinery tailings.

The bauxite mines on the Gulf of Carpentaria produce 10% of the world's bauxite with large reserves supporting planned mine operations until 2057 at Weipa and 2037 at Bauxite Hill.

Queensland also produces 1% of the world's copper, with deposits primarily located around Mt Isa.

However, some of Queensland's deposits are not viable or have not yet reached economic feasibility due to the remoteness and quality of the deposits.

Exhibit 13: Key mineral reserves

Queensland's share of global production volume (kt) and global reserves (kt) of key battery minerals

Cell manufacturing is important for industry development, and as such Queensland should focus on developing its cell manufacturing capabilities

 Helps foster growth in other parts of the value chain. The impact of cell manufacturing on the value chain is illustrated by the influence of battery gigafactories in industry dynamics. More tier 1 cell manufacturers are looking to vertically integrate through upstream partnerships with material suppliers. This reduces supply chain risk and gives product certainty to their buyers.¹ Cell manufacturing: Brings together active materials into an integrated product, creating local demand for upstream materials. Reduces the risk for pack assembly facilities of difficulty in obtaining cells,² and reduces the costs of difficulty in obtaining cells,² and reduces the costs 	Leads innovation in cells and active materials. The cell is a key determinant of battery performance , as the cell quality impacts the pack life and durability. The relative importance of improvements in battery cell technology is demonstrated by the international focus on cell manufacturing innovation. There are almost 2 times the number of patents for cells compared to the combined number of patents related to other battery developments. Cell manufacturers also dictate the specifications for active materials, which are the other key primary determinant of battery performance.

Notes: 1. As illustrated by the upstream integration strategies of CATL, BYD, Northvolt and Verkor, the planned joint venture between Volkswagen's cell factories and Umicore, and downstream vertical integration with cell manufacturing for companies like BYD, Tesla and Northvolt; 2. Particularly given the expected global cell shortage from sources other than China; 3. Without production scrap, recycling will take longer to emerge due to the time delay in local batteries being ready for recycling.

Source: Bridge & Faigen, (2022), Towards the lithium-ion battery production network: Thinking beyond mineral supply chains; The White House (June, 2022), Building Resilient Supply Chains, Revitalizing American Manufacturing, and Fostering Broad-Based Growth; IEA (July, 2022), Global Supply Chains of EV Batteries; IPCEI, (2022), The importance of regional value creation structures in the battery industry; Batteries Europe, (2022), Strategic Research agenda for batteries; IEA, (September, 2022), Innovation in batteries and electricity storage; Accenture analysis

Queensland should move quickly to capture battery value chain opportunities, with pack assembly presenting opportunities in the short-term

Pack assembly provides a quick entry point for Queensland in the short-term, while it builds its capabilities in other areas of the value chain such as cell manufacturing.

The battery value chain is growing at 20% a year, and moving quickly to capture opportunities will be important given the pace of change in the industry.

Queensland should build out its capabilities in pack assembly, as it is a relatively quick to production part of the value chain. The lead time for battery pack production is shorter than the lead times for midstream activities such as refining, active materials production, and cell manufacturing.

Given that Queensland will need batteries to support its renewable energy targets, local pack assembly capabilities will ensure that Queensland can take advantage of its own demand for batteries. Pack assembly close to the end-use location provides costs advantages, which is why pack assembly facilities are typically co-located with sources of demand.

Exhibit 14: Typical lead times to reach production in EV battery supply chain

Number of years, 2022

Notes: Based on lead times in Norway, Germany and Sweden.

Source: IEA (1uly, 2022), Global Supply Chains of EV Batteries; McKinsey (January, 2022), Capturing the battery value- chain opportunity; IEA, (September, 2022), Innovation in batteries and electricity storage; IPCEI, (2022), The importance of regional value creation structures in the battery industry; Norwegian Ministry of Trade, Industry and Fisheries, (June, 2022), Norway's battery strategy; The White House (June, 2022), Building Resilient Supply Chains, Revitalizing American Manufacturing, and Fostering Broad-Based Growth; Corvus, (2018); Siemens, (2018); Siemens, (2018); Siemens, (2022); BMW (2022); Accenture analysis (2020); Freyr, (2020); Freyr, (2021); Northvolt, (2022); Morrow, (2022); Accenture analysis

Queensland's battery value chain activity is focused in the North and South East regions of the State

Queensland has mining and refining activity in the North West and North, along with refining and midstream-downstream value chain activities in the South East.

Queensland has a variety of activities which contribute to the battery value chain ecosystem:

North West Queensland has mineral deposits, including graphite deposits, vanadium deposits and lithium deposits, along with mines such as the Greenvale nickel mine and the St Elmo, Richmond, Vecco and QEM vanadium mines.

North Queensland has JCU, which engages in research on the processing of raw materials, and refining activity due to the TECH nickel refinery, along with tungsten deposits at Mount Carbine and nickel deposits west of Townsville.

Central Queensland is developing refining capabilities through AlphaHPA's investment in Gladstone.

Wide Bay Burnett is developing iron flow battery assembly capability through ESI Asia Pacific's investment in Maryborough.

South East Queensland is developing commercial scale cell manufacturing and pack assembly through Feline, and research at Griffith University, QUT, and UQ. GMG are also active in cell manufacturing and RedEarth in battery pack assembly.

South East Queensland also has integration, service and maintenance capabilities through Redback Technologies, RedEarth, Prohelion, Vaulta, eleXsys, BusTech, Tritium Charging and Evie Networks, along with research and testing at the NBTC. Everledger are active in re-use and recycling.

Key

Industry location for: mineral deposits

- mines
- refining
- active materials
- cell manufacturing
- pack assembly
- integration, service and maintenance
- re-use and recycling

Non-industry centre: • university • research hub

Source: Lithium Energy (2022); Australian Mines (2022); Sconi, (2022); Queensland Government (2022); QEM (February, 2022); AFR (2022); Queensland Government (2022); Ror Tinto (2022), Alpha HPA (2022); Lava Blue (2022); QPM (October, 2022); QPM (Une, 2022); QPM (Line, 2022); Vecco Group (2022a); Vecco Group (2022b); Graphene Manufacturing Group, (2022), AnteoTech (August 2022); Lithium Australia (Lity, 2022); Magnis (2022); Century Yuasa (2022); Feline (2022); SI Asia Pacific, (2022); Tritium Charging (2022); RedEarth (2019); Queensland Government (2018); Prohelion (2022); Queensland Government (2022); Gueensland Government (2022); Century Yuasa (2022);

Developing Queensland's battery industry could generate up to \$1.3B of economic activity and 9,100 jobs by 2030

There are two potential paths for the future development of Queensland's battery industry

Notes: 1. Scenarios are based on assumptions of demand capture in the Queensland, Australian and International battery markets. Path 1: QLD captures 100% of demand from QLD, but is not able to capture any demand outside of QLD. Path 2: QLD captures 100% of QLD demand, 40% from the rest of Australia, and 1% internationally. Further detail found in appendix; 2. There is potential for the value realised to be higher than stated, given the rapidly evolving demand profile for batteries globally and domestically, as well as the recent supply challenges for multiple critical minerals having significant price effects Source: Accenture analysis

Scale at pace could give Queensland an early mover advantage, enabling it to capture more demand domestically, and potentially internationally

Queensland could focus on applications where it has the greatest ability to meet future demand

Queensland's local demand for stationary storage and select mobility applications, such as electric trucks and buses, have the lowest barriers for industry to capture. Much of this demand is government driven through grid storage or vehicle fleet electrification, and can be guaranteed for manufacturers with local content rules. Additionally, Queensland can leverage it's existing capabilities in specialised application to target defence, mining and off-grid stationary storage. Under the local and specialised industry path, Queensland could target meeting this local demand for stationary storage, select mobility applications, and specialised applications.

An early mover advantage gives Queensland industry a better chance of capturing demand across the rest of Australia, as it can establish brand recognition and customer loyalty as demand grows for batteries. Under the leading Australian industry path, Queensland could leverage this early mover advantage to capture demand across Australia.

Queensland's ability to compete on cost is the most significant barrier to meeting international demand, particularly in EV batteries. If Queensland can reduce production costs, and position it's battery brand as reliable, green, and as a source of diversification then capturing some global stationary storage demand may be possible. Key international markets for Queensland to target could include South East Asian countries such as Malaysia or Thailand who both have significant future gridstationary storage demand and close geographical proximity to Australia. Exhibit 15: Addressable market for various battery applications

Local and specialis	sed industry, target demand		Fewer barriers	Significant barriers
Leading Australiar	n industry, additional target demand			
	Application (not exhaustive)	Addressable market	Potential size 2030 ¹	Ability to meet demand
	Stationary storage	International	670 GWh	•
	Cuid stations we stave as ?	Queensland	14 GWh	
	Grid stationary storage ²	Rest of Australia	27 GWh	
Stationary storage	Residential and behind the meter	Queensland	7 GWh	
	stationary storage ³	Rest of Australia	18 GWh	
	Off-grid stationary storage ⁴	Queensland	1 GWh	•
		Rest of Australia	5 GWh	
	Defence	Australia	1 GWh	•
Specialised storage	N 41-15	Queensland	0.7 GWh	
8-	Mining	Rest of Australia	2.6 GWh	
		International	7,000 GWh	•
	Electric passenger vehicles	Australia	133 GWh	•
		Queensland	3 GWh	
	Electric trucks and buses	Rest of Australia	11 GWh	

Notes: 1.Total cumulative demand from 2023-2030 inclusive; 2. Based on the AEMO Step Change scenario, for East Coast of Australia; 3. Distributed energy storage includes grid connected batteries installed to support the customer's own load as well as coordinated systems in a virtual power plant arrangement; 4. Based on 2% of Australian population, average household size of 2.6 people and average battery size of 42kWh; limited data makes this market challenging to size; 5. Based on 20% of Australian mines electrifying, with an average of 15 haulers per mine with a 2MWh battery per hauler and a battery replacement after 2.5 years as well as a 50MWh battery per mine electrifying

Sources: Wood Mackenzie (2022); Renew Economy (2022); Energy Storage News (2022); SolarRun (2020); Accenture analysis; Expert interviews

There are six enablers for Queensland to develop a battery industry

Five key initiatives will incentivise firms to locate in Queensland, supporting them to access customers, technology, people and capital

	Enabler addressed	Key initiative
01	Building a customer base	Prioritise local content in government procurement The electrification of the energy grid and government transport fleets will require significant battery purchasing by Queensland and other state governments, providing a large source of demand
02	Building a customer base	Assist industry with trade promotion, and the development of a Queensland battery brand Developing and promoting Queensland's battery brand domestically and internationally could support industry to attract new sources of demand
03	Access to technology & infrastructure	Develop a Queensland Battery Industrialisation Centre By developing a Battery Industrialisation Centre, Queensland could provide a hub for innovation and collaboration, link academia and industry to drive R&D, and support commercialisation activity
04	Finding skilled workers	Develop battery specific education, upskilling and reskilling programs Battery specific education courses across VET and university programs could support talent flows into the industry and provide reskilling opportunities for workers exiting declining industries
05	Accessing project capital	Invest in attracting lithium-ion battery and active materials manufacturing firms Providing Government co-investment could de-risk the up-front capital costs for larger manufacturing firms, incentivising them to locate in Queensland and accelerate the State's production capacity

Capturing more domestic demand can increase the potential size of the industry, and drive downstream value in integration & services

Integration and services makes the most significant contributions to value and job creation.

In both pathway 1 and 2, integration and services accounts for the majority of job creation across the value chain. This value could largely be realised through the construction, integration and maintenance of stationary storage batteries in Queensland and Australia

Pathway 2 would have relatively lower job creation in services and integration due to the export of battery products interstate and overseas.

Without a domestic automotive industry, EV battery production would require significant exports, and the majority of the value add and jobs created from this integration and services activity would not be captured domestically.

Exhibit 16: GVA and Job¹ potential by value chain segment, pathway 1 and pathway 2, 2030

Leading Australian industry (Path 2)²

Notes: 1. Direct jobs required to operate and maintain activity. Does not include temporary construction jobs.; 2. There is potential for the value realised to be higher than stated, given the rapidly evolving demand profile for batteries globally and domestically, as well as the recent supply challenges for multiple critical minerals having significant price effects Source: Accenture analysis

Appendix A1. Value chain deep-dives

The most attractive opportunity for Queensland is lithium-ion manufacturing, with a focus on stationary storage applications

Greatest area of o	opportunity	Smallest area of opportu	nity					
		Materials		Battery ma	nufacturing	Integration a	nd services	Application
	Mining raw materials	Refining to chemicals	Active materials manufacturing	Cell manufacturing	Battery pack assembly	Integration, service and maintenance	Re-use and recycling	Demand
	Vanadium	НРА	Cathode					
	Graphite	Nickel Sulphate	Anode					Stationary storage
Lithium-ion	Other	Lithium hydroxide	Separator	Lithir	um-lon	Installation and	Collection, transport and processing	
	Lithium	Cobalt sulphate	Electrolyte			maintenance		
	Cobalt	Other metals & chemicals						Mobility
	Nickel							
Alternate	Vanadium	Vanadium	electrolyte	Vanadi	um Flow	Installation and	Collection, transport	Stationary storage
technologies	Other	Other	Other	Iron	Flow	maintenance	and processing	Mobility
Rationale	Queensland's resource strengths are in vanadium, aluminium and potentially graphite. Queensland could leverage these materials most effectively if vanadium flow battery technology is more widely adopted.	There is a strong global market for refining and active materials manufacturing. Queensland has strong existing and developing capabilities in HPA, nickel and cobalt refining, and cathode production. Queensland could also utilise its vanadium and iron resources to develop cost competitive vanadium and iron electrolytes.		Queensland's capabilities in lithium-ion battery manufacturing are currently limited, however it is the most significant opportunity to create value and further develop a battery industry. Lithium-ion is, and is expected to be, the dominant battery technology other than lead-acid going forward. Vanadium presents an opportunity for Queensland, particularly if vanadium flow hatteries have more		Growth in battery use and installation in Queensland could create demand for local installation and maintenance capabilities	Re-use and recycling will be critical to batteries in long-term, but will take time to develop into a substantial industry because the stock of batteries needs to increase	Queensland has the greatest ability to compete in Lithium- ion stationary storage unless alternate technologies are adopted. It's unlikely Queensland can compete in mobility annlications

Queensland has opportunities to mine the raw materials for the battery industry, but the scale varies by mineral

				Scale of opportunity	Lower
Criteria	Summary of opportunity	Rating	Revenue and investment		
Attractiveness	 Significant global market for lithium due to its use in lithium-ion batteries, which is the predominant battery technology other than lead-acid. Vanadium, graphite, aluminium, nickel and cobalt are in demand for battery active materials and electrolytes. 		\$8B in global revenue by 2030 ²	JINCHUAN	Pilbara Minerals 多川
	Current and planned activities			Current	
	 \$2B+ of planned vanadium mining to produce 35,000 tonnes of vanadium pentoxide and 12,000 tonnes of vanadium pentoxide flake p.a. 			RioTinto	
	 \$1.5B of planned nickel and cobalt mining to produce 71,000Mt and 7,000Mt dry metric tonnes respectively.¹ 			Planned	
	Queensland's competitive advantages			Fiumeu	
Capabilities in	28% of global vanadium reserves.		\$2.5-5B	С ОЕМ	ANADIUM
Queensland	Shallow vanadium deposits, which reduces mining costs.		in current Queensland		TECHNOLOGY
	 Aluminium reserves of sufficient grade and scale to already be commercialised. 		investment	VFCC	
	• Graphite reserves with a pure grade of 16%.			Group	

Notes: 1. Produced over 6 years; 2. Global revenue in USD; 3. Current investment in AUD

Source: WEF (2019), A Vision for a Sustainable Battery Value Chain in 2030; IEA (<u>luly, 2022</u>), Global Supply Chains of EV Batteries; Goldman Sachs (<u>March, 2022</u>), Electric Vehicles: What's Next VII: Confronting Greenflation; IEA, (<u>May, 2022</u>), Critical minerals threaten a decades-long trend of cost declines for clean energy technologies; IEA, (<u>May, 2021</u>), The Role of Critical Minerals in Clean Energy Transitions; Lithium Energy (2022); Australian Mines (2022); Sconi, (2022); Queensland Government (2021); QEM (February, 2022); AFR (2021); Queensland Government (2022); Rio Tinto (2022); Aeon Metals (2021); Accenture Analysis

These opportunities can be captured through Queensland's competitive advantage in mining vanadium and aluminium

		Vanadium	Lithium	Aluminium	Graphite	Nickel	Cobalt	Strength Lower Higher
Size and attractiveness of opportunity	Global opportunity	\$0.1B-\$0.3B of revenue ^{1,2}	\$3B ²		\$2B ²	\$2B ²	\$1B ²	 The largest opportunities by revenue from the battery value chain are in nickel, lithium and graphite.
Capabilities	Importance in value chain	Significant determinant of 33% of vanadium flow battery pack capital costs ³	11% of battery pack price ⁴	0.5% of battery pack price⁴	5% of battery pack price ⁴	8% of battery pack price ⁴	2% of battery pack price ⁴	• Lithium and nickel are key contributors to battery pack prices, and are important capabilities in reducing materials and logistics costs due to the use of lithium in electrolyte, and the use of lithium and nickel in some cathodes. Vanadium is a key contributor to vanadium flow battery prices through its use in vanadium electrolyte.
Capabilities	Current and planned activities	Investment from Multicom, QEM, Vecco and Richmond vanadium	Limited investment outside of exploration from Strategic Metals Australia ⁵	Investment from Rio Tinto into bauxite production	Limited investment ⁶	Investment from Sco investment from Ae	oni and planned on Metals	 Queensland has current mining of bauxite out of the Weipa mines, planned vanadium mining out of projects from Multicom, QEM, Vecco Debella and Richmond vanadium, planned nickel and cobalt mining out of the Sconi mine, and nickel and cobalt exploration from Aeon Metals.
	Cost competitiveness	28% of world's reserves, medium grade, shallow deposit	0% of world's reserves ⁷	5% of world's reserves, medium-high grade	1% of world's reserves, high grade	0.2% of world's reserves, lower grade	2% of world's reserves, including reserves in tailings	 Queensland has the greatest cost competitiveness in vanadium, aluminium and graphite due to the availability and grade of reserves, which reduces mining costs. The vanadium reserves are in shallow deposits and some cobalt reserves are in tailings, which would reduce mining costs.
	Ability to provide differentiated products							 Queensland has the highest ability to provide differentiated products for the materials with available and higher grade reserves, such as vanadium, aluminium and graphite.
	Skills of labour			Current skills in bauxite at Weipa mines				 Skilled Queensland mining workforce, and training at the Mackay Resources Centre of Excellence Current bauxite mining workforce

Notes: 1. Higher revenue if early adoption of vanadium redox flow batteries; 2. Revenue from expected 2030 sales of materials to be used in the battery value chain, using current prices, scaled by the \$8b revenue opportunity for mining raw materials for batteries in 2030; 3. The concentration of vanadium, volume of solution and the cost of vanadium determine the cost of vanadium solution, which is 33% of battery pack capital costs; 4. Expected percentage of 2025 battery pack prices; 5. Strategic Metals Australia made a pegmatite discovery near Georgetown; 6. Lithium Energy is engaging in testing of the Burke Graphite deposit; 7. Lithium pegmatites in the Georgetown region which could be explored

Sources: Goldman Sachs, (June, 2022), Batteries: The Greenflation Challenge II: Raising battery price forecasts; addressing six key investor debates (March, 2022), IEA, (May, 2021), The Role of Critical Minerals in Clean Energy Transitions; Lithium Energy (2022); Australian Mines (2022); Sconi, (2022); Queensland Government (2021); Vecco Group, (2022); QEM (February, 2022); Queensland Government (2021); Rio Tinto (2022); Aeon Metals (2022); Strategic Metals Australia, (2022); Accenture Analysis

There are opportunities for Queensland to play a key role in refining minerals that are mined locally

			Sca	Lower O Higher
Criteria	Summary of opportunity	Rating	Revenue and investment	Key players
Attractiveness	 Large global market for lithium hydroxide and lithium carbonate, due to its importance in lithium-ion batteries. Vanadium pentoxide, alumina, nickel sulfate, cobalt sulfate and graphite are in demand for a range of battery applications. 		\$74B in global revenue by 2030 ¹	Cobalt
	Current and planned activities			Current
	 Lava Blue, AlphaHPA, Vecco Debella and QPM TECH are planning on producing 21,000 tonnes of HPA per annum collectively. 			RioTinto
	 QPM TECH is planning on producing 16,000 tonnes of nickel sulfate and 1,800 tonnes of cobalt sulfate. 			Planned
	Competitive advantages			
Capabilities in Queensland	 Locally mined vanadium, aluminium, nickel, cobalt and graphite would provide a cost advantage for Queensland refining. 		in current Queensland	Graphene Manufacturing Group
			Investment ²	COLORY QUEENSLAND
				VECCO LAVA BLUE
				Alpha HPA

Similar to mining, these opportunities are predominately in refining vanadium and aluminium

		Vanadium	Lithium	Aluminium	Graphite	Nickel	Cobalt	Strength Higher Lower
Size and attractiveness of	Global opportunity	\$1-3B of revenue ¹	\$25-30B ¹		\$15-20B ¹	\$20-25B ¹	\$10-15B ¹	• The largest refining revenue opportunities for the battery value chain are in lithium, nickel and graphite.
Canabilities	Importance in value chain	Significant determinant of 33% of battery pack capital costs	11% of battery pack price	0.5% of battery pack price	5% of battery pack price	9% of battery pack price	2% of battery pack price	 Lithium and nickel are key contributors to battery pack prices, and are important refining capabilities in reducing materials and logistics costs due to the use of lithium in electrolyte, and the use of lithium and nickel in some cathodes. Vanadium is a key contributor to vanadium flow battery prices through its use in vanadium electrolyte.
Capabilities	Current and planned activities	Potential refining from Multicom, QEM or Vecco	Limited investment	Investment from Lava Blue, AlphaHPA, Vecco Debella and QPM TECH ²	Investment from GMG into graphene production ³	Investment from Sconi and QPM TECH ⁴		 Pilot common user vanadium processing infrastructure, planned HPA production from Lava Blue, AlphaHPA, Vecco Debella and QPM TECH, planned graphene production from GMG, and planned nickel and cobalt sulfate production from Sconi and QPM TECH.
	Cost competitiveness	28% of world's reserves, medium grade	0% of world's reserves⁵	5% of world's reserves, medium-high grade	1% of world's reserves, high grade	0.2% of world's reserves, lower grade	2% of world's reserves, including in tailings	 Queensland has the greatest cost competitiveness in vanadium, aluminium and graphite due to the availability and grade of reserves, which reduces mining costs.
	Ability to provide differentiated products	Significant reserves of medium grade	Limited reserves	Higher purity HPA	Graphene using a proprietary process	Production of low e refined products us materials	emissions high grade sing imported	 Queensland can produce more differentiated refined chemicals by using higher grade and more available reserves, unique processes such as GMG's graphene production, and the research into materials processing at JCU, UQ and QUT.
	Skills of labour							 Skills at JCU, UQ and QUT,⁶ training at the Mackay Resources Centre of Excellence, and emerging skills from companies with planned activities.

~ ~ ~ ~

1

Queensland has the capabilities to produce cathodes, anodes, and electrolytes, which will help establish a local battery industry

iteria	Summary of opportunity	Rating	Revenue and investment	Key players ³		
Attractiveness	 Global opportunities in anodes and cathodes because of the attractive market size and supply shortages. Opportunities to produce vanadium electrolyte, particularly if there is early adoption of vanadium redox flow batteries. 		\$24B in global revenue by 2030 ¹	Sumitomo	Corporation BTR 贝特瑞	
	Current and planned activities			Current		
	 AnteoTech is developing silicon anodes, and VSPC is planning on producing 10,000 tonnes of LFP cathode powder per annum. 			Feline		
	 UQ, QUT and Griffith University have research on active materials, particularly in cathodes and anodes. 			Advancing Technologies		
	Competitive advantages		Ć. 600 4			
Capabilities in Queensland	 Queensland has cost advantages in iron and vanadium electrolytes, as there is mining of raw materials which could be used in to reduce logistics and material costs. 		in current Queensland investment ²	₹5 AnteoTech	BATTERY	
	 Queensland could produce differentiated anodes and cathodes for high performance cells and niche applications given the strength of R&D into these active materials. 			VECCO	VSP	

Queensland has competitive advantages in producing vanadium and iron electrolytes, and emerging R&D into cathode and anode innovation

		Lithium-ion materia	Lithium-ion materials				als	Strength Higher Lower
		Anode	Cathode	Electrolyte	Separator	Iron electrolyte	Vanadium electrolyte	
Size and attractiveness of opportunity	Global opportunity	Significant revenue opportunity	Significant revenue opportunity	Smaller revenue opportunity	Smaller revenue opportunity	Iron flow batteries make up a small proportion of the market	Vanadium flow batteries make up a small proportion of the market	• The largest revenue opportunities for battery active materials in the battery value chain are in cathodes and anodes, which the world is in short supply of.
	Importance in value chain	13% of cell material costs	57% of cell material costs	8% of cell material costs	7% of cell material costs	Key contributor to battery costs	33% of battery capital costs	 Anodes and cathodes make up a significant proportion of lithium- ion cell material costs, and vanadium electrolyte makes up a significant proportion of vanadium flow battery capital costs. As such, these capabilities help facilitate battery manufacturing by lowering materials and logistics costs.
Capabilities	Current and planned activities	Current development of silicon anodes	Investment from VSPC and Feline	Limited investment	Limited investment in separator, but investment into HPA which coats separators	Planned production	Planned production from Vecco	 AnteoTech is developing a silicon anode, PBT developed precursor cathode active materials and is manufacturing them overseas, VSPC is manufacturing LFP cathodes, Feline is manufacturing cathodes, and Vecco Group is planning on manufacturing vanadium electrolyte. UQ, QUT and Griffith University also engage in active materials R&D, particularly in anodes and cathodes.
	Cost competitiveness	Lack of graphite production	Planed vanadium, nickel and cobalt production	Lack of lithium production	Planned HPA production ¹	Cost competitive with vanadium electrolyte	Planned vanadium production	 Queensland has the greatest cost competitiveness in vanadium and some cathode types due to planned local mining and refining for necessary inputs, which reduces materials and logistics costs.
	Ability to provide differentiated products	Silicon anodes	LFP, LFMP, NMC cathodes, vanadium based cathodes ²	Opportunities which Queensland could pursue ³	Higher purity HPA, and other opportunities which Queensland could pursue ⁴	Higher purity electrolyte	Higher purity electrolyte	 Queensland has the ability to provide silicon anodes, which are differentiated in performance from graphite anodes, develop vanadium based cathodes, improve phosphate based cathodes, alter the ratios in NMC cathodes, and improve the purity of iron or vanadium electrolyte.
	Skills of labour	Current skills through AnteoTech	Emerging skills through PBT and VSPC	No current workforce	No current workforce	Potential emerging workforce	Emerging skills at Vecco	 Queensland has skilled labour through the current and planned active materials activities, in addition to the skills at UQ, QUT, Griffith University, JCU and the NBTC.

Notes: 1. PE and PP is also needed, although these are inexpensive materials; 2. Specific cathode chemistries: lithium iron manganese phosphate, litkium aron manganese and cobalt, and vanadium based cathodes. Opportunities for Queensland include optimising phosphate chemistries such as LPP and LFMP, increasing capacity by altering the ratios in nickel based cathodes, and developing vanadium based cathodes; 3. Opportunities exist globally to develop solid or semi-solid electrolytes; stabilise electrolytes; 4. Opportunities exist globally to develop reduced thickness separators, or design separators for specific cell chemistries

University (2022); UQ (2022); UQ, (April, 2021); GMG, (April, 2021); UQ, Dow Centre Annual Report 2020, (2020); AMGC, (2022); Accenture Analysis

1

Cell manufacturing presents an attractive opportunity for Queensland due to its capabilities in battery cell innovation

teria	Summary of opportunity	Rating	Revenue and investment	Key players		
Attractiveness	 Lithium-ion cells have a significant global market, with \$136B in expected revenue by 2030. Flow battery cells have a smaller expected global market, but have applications for stationary storage in particular. 		\$ 136B in global revenue by 2030 ¹	CATL CATL LG Chem Panasonic		
	Current and planned activities			Current		
	 High performance lithium-ion cells are being produced by Feline, and QUT providing lithium-ion cell prototyping for active material validation and qualification and the NBTC providing cell certification for transport and use. 			Feline Advancing Technologies		
	 Graphene aluminium-ion coin cells are being manufactured at a pilot scale the Graphene Manufacturing Group. 	у		Planned		
Capabilities in	Competitive advantages		\$1-50M			
Queensland	 Cost competitiveness of vanadium flow, iron flow and potentially graphene aluminium-ion cells given the planned local input materials. 	\bigcirc	in current Queensland investment ²	Graphene Manufacturing Group		
	 Queensland's strong battery industry R&D would help enable the State to produce a differentiated product, such as graphene aluminium-ion and flow battery cells, and high performance lithium-ion cells. 	,		Prototyping QUT FUTURE BATTERY INDUSTRIES OR NATIONAL BATTI TESTING CENTRE		

Manufacturing Group (December, 2021), Battery Pilot Plant; Redflow (August, 2021), FY2021 Results; Redflow (2022); Why Redflow?; Koo et al., (2019), Modeling the Performance of a Zinc/Bromine Flow Battery; Feline (2022); NBTC (2022); Griffith

40

Queensland has capabilities in lithium-ion, vanadium lithium-ion and graphene aluminium-ion cells

			Vanadium lithium-ion	Graphene aluminium-ion	Flow battery cells		Strength Higher
			cells	cells	Iron	Vanadium	
Size and attractiveness of opportunity	Global opportunity	\$136B of revenue	Higher voltage and energy density has the potential to displace existing cathodes as the main lithium battery cathode	Emerging technology with characteristics including high energy density, high power density, and fast charging speed	Emerging technology with characteristics including high cycle life, and cost advantages over vanadium flow	Largest market for alternative technologies to lead-acid and lithium- ion ¹	 Lithium-ion batteries have a significant global market, but vanadium lithium-ion and graphene aluminium-ion batteries may grow in market share due to appealing performance characteristics. Flow batteries may grow in market share as they have a higher cycle life, and battery capacity can be increased by increasing the quantity of electrolyte without changing capital expenditure.
	Importance in value chain	74% of battery costs	Significant contributor to battery costs, and reduction of supply instability for materials such as cobalt	Significant contributor to battery costs	Significant contributor to battery costs	Significant contributor to battery costs	 Cell manufacturing facilitates pack assembly by reducing materials and logistics costs and creates demand for active materials production.
Capabilities	Current and planned activities	Current production of high performance cells ²	Planned commercial scale cell manufacturing	Coin cell pilot scale production and pouch cell prototyping	No current or planned activities	No current or planned activities	 Feline is producing high performance lithium-ion and vanadium lithium-ion cells for niche applications, QUT is engaging in prototyping of lithium-ion cells (coin, cylindrical, pouch) and the GMG is prototyping graphene aluminium-ion coin and pouch cells.
	Cost competitiveness	Planned cathode production	Planned vanadium production and higher cell capacity	Current graphene production	Planned iron electrolyte production	Planned vanadium electrolyte production	 Queensland has the greatest potential cost competitiveness in manufacturing vanadium lithium-ion, graphene aluminium-ion, iron flow and vanadium flow cells, as necessary active materials components for these cells will also be produced in Queensland.³
	Ability to provide differentiated products	Current production of high performance cells	Planned production of uniquely advanced technology	Current production of cells that are unique on the market	Emerging technology with differentiated characteristics	Emerging technology with differentiated characteristics	 Queensland can develop highly differentiated cells and cell stacks as there are high performance lithium-ion and vanadium lithium-ion cells and unique graphene aluminium-ion cells being produced, and R&D into electrodes and cell fabrication at UQ and QUT with cell certification at the NBTC. In addition, flow battery cells are differentiated from lithium-ion cells due to characteristics such as high cycle life.
	Certification for transport and use	NBTC developing certification capability to existing Australian standards	NBTC developing certification capability to existing Australian standards	NBTC developing certification capability to existing Australian standards	NBTC developing best practice to inform standards generation	NBTC developing best practice to inform standards generation	 Certification for both cells and packs is required for battery products to be sold. Current certification covers lithium-ion and aluminium-ion cells and packs with no standards for flow batteries. NBTC is developing data sets to inform best practice and standards generation for flow battery certification.
	Skills of labour	Current skills through Feline and the NBTC	Current skills through Feline	Current skills through GMG and UQ	Emerging skills through ESI Asia Pacific	No current workforce	 Queensland has skilled labour through current and planned activities, the NBTC, and research from UQ, QUT and Griffith University.

Notes: 1. Potential for vanadium redox flow batteries to replace LFP batteries for utility-scale storage if there was early stage VRFB commercialisation, with the potential to capture almost a third of the energy storage market by 2050; 2. In addition to a completed feasibility study by Magnis Energy for a \$38 cell manufacturing plant; 3. Active materials production reduces materials and logistics costs.

Source: Magnis (August, 2020), Media Release; FBI CRC (2020), State of Play- Australia's Battery Industries; Roland Berger (2022), The Lithium-Ion Battery Market Supply Chain; LaRocca (July, 2020), Office of Industries Working Paper, Global Value Chains: Lithium in Lithium-ion Batteries for Electric Vehicles; Queensland Government Department of Energy and Public Works, (2022), Queensland's renewable energy target; The Faraday Institution (November, 2021), The UK: A Low Carbon Location to Manufacture, Drive and Recycle Electric Vehicles; Magnis, (2022), Media Release; Magnis, (2020), iM3TSV Lithium-ion Battery Factory in Australia'; Feline (2022); Rource); Griffith University (2022), Centre for Catalysis and Clean Energy; Griffith University (2022); Graphene Manufacturing Group, (September, 2022), Corporate Presentation; IEA, (May, 2021), The Role of Critical Minerals in Clean Energy Transitions; Accenture Analysis

The global market for lithium-ion battery packs is attractive, but Queensland has advantages in vanadium and iron flow batteries

tedflow?; Koo et al., (2019), Modeling the Performance of a Zinc/Bromine Flow Battery; Feline (2022); NBTC (2022); QUT (2022); Griffith University (2022); UQ (2022); Accenture Analysis

Queensland has capabilities in lithium-ion pack assembly, with planned assembly for other battery chemistries

		Lithium-ion batteries	Vanadium lithium-ion	Graphene aluminium-ion batteries	Flow batteries			Strength Higher Lower		
			batteries	batteries	Iron	Vanadium	Zinc bromine	I		
Size and attractiveness of opportunity	Global opportunity	\$47B in revenue	Higher voltage and energy density has the potential to displace existing cathodes as the main lithium battery cathode	Emerging technology with characteristics including high energy density, power density and charging speed	Emerging technology with characteristics including high cycle life, and cost advantages over vanadium flow	Largest market for alternative technology to lead-acid and lithium-ion ¹	Emerging technology with low cost materials, and characteristics including high energy density	 Lithium-ion batteries have a significant global market, but graphene aluminium-ion batteries may grow in market share due to appealing performance characteristics. Flow batteries may grow in market share as they have a higher cycle life, and battery capacity can be increased by increasing the quantity of electrolyte without changing capital expenditure. 		
	Importance in value chain	Primarily mobility applications	Significant contributor to battery costs, and reduction of supply instability for materials such as cobalt	Multiple potential applications, including stationary and mobility	Primarily stationary applications	Primarily stationary applications	Primarily stationary applications	 Pack assembly provides demand for cell manufacturing, and reduces logistics costs for the integration, service and maintenance industry. The largest battery markets are in mobility applications, which lithium-ion and potentially graphene aluminium-ion are suited to, but Queensland will also need stationary applications. 		
Capabilities	Current and planned activities	Current production of high performance packs	Planned commercial scale manufacturing	Potential production	Planned production	No current or planned activity	Current overseas manufacturing	 Feline is producing high performance lithium-ion and vanadium lithium- ion battery packs for niche applications, ESI Asia Pacific has planned production of iron flow batteries, and Redflow produces zinc bromine batteries overseas. 		
	Cost competitiveness	High performance cell production	Planned vanadium production and higher cell capacity	Graphene production using natural gas, planned cell manufacturing	Electrolyte production, but no cell manufacturing	Electrolyte production, but no cell manufacturing	No cell manufacturing	 Queensland has current lithium-ion and vanadium lithium-ion cell production, planned graphene aluminium-ion cell production, and planned iron and vanadium electrolyte production, which reduces materials and logistics costs for battery packs. 		
	Ability to provide differentiated products	Current production of high performance packs	Planned production of uniquely advanced technology	Unique on the market	Emerging technology with differentiated characteristics	Emerging technology with differentiated characteristics	Emerging technology, and the world's smallest zinc bromine battery ²	 Queensland can develop highly differentiated batteries such as high performance lithium-ion batteries and unique graphene aluminium-ion batteries. In addition, flow batteries are differentiated from lithium-ion batteries due to characteristics such as high cycle life. 		
	Certification for transport and use	NBTC developing certification capability to existing Australian standards	NBTC developing certification capability to existing Australian standards	NBTC developing certification capability to existing Australian standards	NBTC developing best practice to inform standards generation	NBTC developing best practice to inform standards generation	May have parallels with iron and vanadium flow best practice	 Certification cells and packs is required for battery products to be sold. Current certification covers lithium-ion and aluminium-ion cells and packs with no standards for flow batteries. NBTC is developing data sets to inform best practice and standards generation for flow battery certification. 		
	Skills of labour	Current skills through Feline	Current skills through Feline	Emerging skills through GMG and UQ	Emerging skills through ESI Asia Pacific	No current workforce	Current skills at Redflow	 Queensland has emerging labour skills in pack assembly through current and planned activities, and research institutions. 		

Notes: 1. Potential for vanadium redox flow batteries to replace LFP batteries for utility-scale storage if there was early stage VRFB commercialisation, with the potential to capture almost a third of the energy storage market by 2050; 2. The smallest zinc bromine battery which is commercially available. Source: ESI Asia Pacific, (2022); Queensland Government; Graphene Manufacturing Group, (September, 2022), Corporate Presentation; Graphene Manufacturing Group (December, 2021), Battery Pilot Plant; Redflow (August, 2021), FV2021 Results; Redflow (2022); Why Redflow?; Koo et al., (2019), Modeling the Performance of a Zinc/Bromine Flow Battery; Feline (2022); NBTC (2022); RDT (2022); GUC (2022); EAI, (May, 2021), The Role of Critical Minerals in Clean Energy Transitions; Accenture Analysis

Queensland has diverse integration, service and maintenance capabilities including in battery systems and EV charging

		Scale o	Dif opportunity Lower
Summary of opportunity	Rating	Investment	Key players
 The integration, service and maintenance market is highly localised, as many services and products are provided directly to the end user of the battery. 			
 Integration, service and maintenance is necessary in order to satisfy customer demand for batteries in mobility and stationary storage applications. 			
Current and planned activities			Current
 Redback Technologies offers offers home storage systems and now gridtied PV inverters, supporting more than 150 operational jobs. RedEarth aims to produce \$70M of LFP lithium-ion battery systems over 			redback technologies RedEarth ENERGY STORAGE
 Four years. Evie Networks has received \$50M in funding for its 42 fast charging EV stations. BusTech has manufactured 3,000 electric buses, with capacity to build 500 	00	\$50-100M	Bustech Group
 new vehicles annually. Tritium made \$78M in revenue during 2021 for DC fast charging technology selling to customers globally. 		in current Queensland investment ³	PROHELION 📀
Competitive advantages			
 Testing facilities, including the NBTC, and Tritium's electromagnetic compatibility testing chambers 			elexsys
 QUT's Battery Testing Microgrid and Energy Queensland's MIST battery testing facility (Cairns) 			RUT
	 Summary of opportunity The integration, service and maintenance market is highly localised, as many services and products are provided directly to the end user of the battery. Integration, service and maintenance is necessary in order to satisfy customer demand for batteries in mobility and stationary storage applications. Current and planned activities Redback Technologies offers offers home storage systems and now gridtied PV inverters, supporting more than 150 operational jobs. RedEarth aims to produce \$70M of LFP lithium-ion battery systems over four years. Evie Networks has received \$50M in funding for its 42 fast charging EV stations. BusTech has manufactured 3,000 electric buses, with capacity to build 500 new vehicles annually. Tritium made \$78M in revenue during 2021 for DC fast charging technology selling to customers globally. Competitive advantages Testing facilities, including the NBTC, and Tritium's electromagnetic compatibility testing chambers QUT's Battery Testing Microgrid and Energy Queensland's MIST battery testing facility (Cairns) 	<text><list-item><list-item><list-item><list-item><list-item><section-header><section-header></section-header></section-header></list-item></list-item></list-item></list-item></list-item></text>	Summary of opportunity Rating Investment

.

Queensland has lead-acid recycling, but recycling capabilities for lithium-ion and flow batteries will also need to expand

				Scale of opportunity	Lower	
Criteria	Summary of opportunity	Rating	Revenue and investment	Key players		
Attractiveness	 \$11B global revenue opportunity for lithium-ion battery recycling by 2030 with highly localised activities due to waste regulations. Opportunity to recover critical minerals profitably,¹ and use these minerals to reduce the impacts of raw material supply shortages. 		\$11B in global revenue by 2030 ²		ore	
Capabilities in Queensland	 Current and planned activities Lead acid battery recycling, including the national Battery Recycling Centres from Century Yuasa. Everledger can track critical minerals and batteries throughout supply chains. E-Cycle and Envirostream have lithium-ion battery collection throughout Australia, including in Queensland, for recycling. Competitive advantages Existing recycling network for lead-acid batteries, which could be expanded to include other battery types. 		\$1-50M in Queensland lithium-i investment ³	current GOLD COA Son Con Con Con Con Con Con Con Con Con C	UryYuasa ST RESOURCE RECOVERY ST RESOURCE RECOVERY	

Notes: 1. The profitability of recycling is dependent on the proportion and value of the component minerals; 2. In USD; 3. Current investment within Queensland for lithium-ion batteries, in AUD Source: WEF (2019), A Vision for a Sustainable Battery Value Chain in 2030; CSIRO (February, 2021), Australian landscape for lithium-ion battery recycling and reuse in 2020; Energy Sector Management Assistance Program (ESMAP), World Bank, (2020), Re-use and Recycling: Environment Sustainability of Lithium-ion Battery Energy Storage Systems; Everledger, (101y, 2021); FBI CRC (March. 2020); Everledger (101y, 2021); RJ Batteries (2022); ABRI (2020); Everled (2022); Ecycle, (2022); Accenture Analysis

This document is intended for general informational purposes only. Views and opinions expressed in this document are based on Accenture's knowledge and understanding of its area of business, markets and technology. Accenture does not provide medical, legal, regulatory, audit, or tax advice, and this document does not constitute advice of any nature. While the information in this document has been prepared in good faith, Accenture disclaims, to the fullest extent permitted by applicable law, any and all liability for the accuracy and completeness of the information in this document and for any acts or omissions made based on such information. Opinions expressed herein are subject to change without notice. No part of this document may be reproduced in any manner without the written permission of Accenture. This document may make references to third party names, trademarks or copyrights that may be owned by others. Any third-party names, trademarks or copyrights contained in this document are the property of their respective owners.